Abstract

Tumor-induced expansion of Tregs is a significant obstacle to cancer immunotherapy. However, traditional approaches to deplete Tregs are often inefficient, provoking autoimmunity. We show here that administration of IL-27–expressing recombinant adeno-associated virus (AAV–IL-27) significantly inhibits tumor growth and enhances T cell responses in tumors. Strikingly, we found that AAV–IL-27 treatment causes rapid depletion of Tregs in peripheral blood, lymphoid organs, and — most pronouncedly — tumor microenvironment. AAV–IL-27–mediated Treg depletion is dependent on IL-27 receptor and Stat1 in Tregs and is a combined result of CD25 downregulation in Tregs and inhibition of IL-2 production by T cells. In combination with a GM-CSF vaccine, AAV–IL-27 treatment not only induced nearly complete tumor rejection, but also resulted in amplified neoantigen-specific T cell responses. AAV–IL-27 also dramatically increased the efficacy of anti–PD-1 therapy, presumably due to induction of PD-L1 in T cells and depletion of Tregs. Importantly, AAV–IL-27 therapy did not induce significant adverse events, partially due to its induction of IL-10. In a plasmacytoma mouse model, we found that IL-10 was required for AAV–IL-27–mediated tumor rejection. Thus, our study demonstrates the potential of AAV–IL-27 as an independent cancer therapeutic and as an efficient adjuvant for cancer immunotherapy.

Authors

Jianmin Zhu, Jin-Qing Liu, Min Shi, Xinhua Cheng, Miao Ding, Jianchao C. Zhang, Jonathan P. Davis, Sanjay Varikuti, Abhay R. Satoskar, Lanchun Lu, Xueliang Pan, Pan Zheng, Yang Liu, Xue-Feng Bai

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement