We generated a comprehensive atlas of the immunologic cellular networks within human malignant pleural mesothelioma (MPM) using mass cytometry. Data-driven analyses of these high-resolution single-cell data identified 2 distinct immunologic subtypes of MPM with vastly different cellular composition, activation states, and immunologic function; mass spectrometry demonstrated differential abundance of MHC-I and -II neopeptides directly identified between these subtypes. The clinical relevance of this immunologic subtyping was investigated with a discriminatory molecular signature derived through comparison of the proteomes and transcriptomes of these 2 immunologic MPM subtypes. This molecular signature, representative of a favorable intratumoral cell network, was independently associated with improved survival in MPM and predicted response to immune checkpoint inhibitors in patients with MPM and melanoma. These data additionally suggest a potentially novel mechanism of response to checkpoint blockade: requirement for high measured abundance of neopeptides in the presence of high expression of MHC proteins specific for these neopeptides.
Hyun-Sung Lee, Hee-Jin Jang, Jong Min Choi, Jun Zhang, Veronica Lenge de Rosen, Thomas M. Wheeler, Ju-Seog Lee, Thuydung Tu, Peter T. Jindra, Ronald H. Kerman, Sung Yun Jung, Farrah Kheradmand, David J. Sugarbaker, Bryan M. Burt
SCAFFOLD maps of tumor immune microenvironment (TiME) in MPM.