Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Krüppel-like factor 4 is a negative regulator of STAT3-induced glomerular epithelial cell proliferation
Chelsea C. Estrada, … , John C. He, Sandeep K. Mallipattu
Chelsea C. Estrada, … , John C. He, Sandeep K. Mallipattu
Published June 21, 2018
Citation Information: JCI Insight. 2018;3(12):e98214. https://doi.org/10.1172/jci.insight.98214.
View: Text | PDF
Research Article Nephrology Article has an altmetric score of 12

Krüppel-like factor 4 is a negative regulator of STAT3-induced glomerular epithelial cell proliferation

  • Text
  • PDF
Abstract

Pathologic glomerular epithelial cell (GEC) hyperplasia is characteristic of both rapidly progressive glomerulonephritis (RPGN) and subtypes of focal segmental glomerulosclerosis (FSGS). Although initial podocyte injury resulting in activation of STAT3 signals GEC proliferation in both diseases, mechanisms regulating this are unknown. Here, we show that the loss of Krüppel-like factor 4 (KLF4), a zinc-finger transcription factor, enhances GEC proliferation in both RPGN and FSGS due to dysregulated STAT3 signaling. We observed that podocyte-specific knockdown of Klf4 (C57BL/6J) increased STAT3 signaling and exacerbated crescent formation after nephrotoxic serum treatment. Interestingly, podocyte-specific knockdown of Klf4 in the FVB/N background alone was sufficient to activate STAT3 signaling, resulting in FSGS with extracapillary proliferation, as well as renal failure and reduced survival. In cultured podocytes, loss of KLF4 resulted in STAT3 activation and cell-cycle reentry, leading to mitotic catastrophe. This triggered IL-6 release into the supernatant, which activated STAT3 signaling in parietal epithelial cells. Conversely, either restoration of KLF4 expression or inhibition of STAT3 signaling improved survival in KLF4-knockdown podocytes. Finally, human kidney biopsy specimens with RPGN exhibited reduced KLF4 expression with a concomitant increase in phospho-STAT3 expression as compared with controls. Collectively, these results suggest the essential role of KLF4/STAT3 signaling in podocyte injury and its regulation of aberrant GEC proliferation.

Authors

Chelsea C. Estrada, Praharshasai Paladugu, Yiqing Guo, Jesse Pace, Monica P. Revelo, David J. Salant, Stuart J. Shankland, Vivette D. D’Agati, Anita Mehrotra, Stephanie Cardona, Agnieszka B. Bialkowska, Vincent W. Yang, John C. He, Sandeep K. Mallipattu

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 499 136
PDF 103 37
Figure 392 5
Table 59 0
Supplemental data 49 2
Citation downloads 65 0
Totals 1,167 180
Total Views 1,347
Created with Highcharts 3.0.9MonthTotalAug 24Sep 24Oct 24Nov 24Dec 24Jan 25Feb 25Mar 25Apr 25May 25Jun 25Jul 25Aug 250250500750100012501500
JCI Citation downloads
JCI Figure
JCI Text version
JCI PDF
JCI Supplemental data
JCI Table
PMC Text version
PMC PDF
Total JCI usage
Total PMC usage
Total usage
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts

Blogged by 1
Posted by 4 X users
Referenced in 2 patents
10 readers on Mendeley
See more details