Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
RIPK3 mediates pathogenesis of experimental ventilator-induced lung injury
Ilias I. Siempos, … , Kiichi Nakahira, Augustine M.K. Choi
Ilias I. Siempos, … , Kiichi Nakahira, Augustine M.K. Choi
Published May 3, 2018
Citation Information: JCI Insight. 2018;3(9):e97102. https://doi.org/10.1172/jci.insight.97102.
View: Text | PDF
Research Article Pulmonology

RIPK3 mediates pathogenesis of experimental ventilator-induced lung injury

  • Text
  • PDF
Abstract

In patients requiring ventilator support, mechanical ventilation (MV) may induce acute lung injury (ventilator-induced lung injury [VILI]). VILI is associated with substantial morbidity and mortality in mechanically ventilated patients with and without acute respiratory distress syndrome. At the cellular level, VILI induces necrotic cell death. However, the contribution of necroptosis, a programmed form of necrotic cell death regulated by receptor-interacting protein-3 kinase (RIPK3) and mixed-lineage kinase domain-like pseudokinase (MLKL), to the development of VILI remains unexplored. Here, we show that plasma levels of RIPK3, but not MLKL, were higher in patients with MV (i.e., those prone to VILI) than in patients without MV (i.e., those less likely to have VILI) in two large intensive care unit cohorts. In mice, RIPK3 deficiency, but not MLKL deficiency, ameliorated VILI. In both humans and mice, VILI was associated with impaired fatty acid oxidation (FAO), but in mice this association was not observed under conditions of RIPK3 deficiency. These findings suggest that FAO-dependent RIPK3 mediates pathogenesis of acute lung injury.

Authors

Ilias I. Siempos, Kevin C. Ma, Mitsuru Imamura, Rebecca M. Baron, Laura E. Fredenburgh, Jin-Won Huh, Jong-Seok Moon, Eli J. Finkelsztein, Daniel S. Jones, Michael Torres Lizardi, Edward J. Schenck, Stefan W. Ryter, Kiichi Nakahira, Augustine M.K. Choi

×
Problems with a PDF?

This file is in Adobe Acrobat (PDF) format. If you have not installed and configured the Adobe Acrobat Reader on your system.

Having trouble reading a PDF?

PDFs are designed to be printed out and read, but if you prefer to read them online, you may find it easier if you increase the view size to 125%.

Having trouble saving a PDF?

Many versions of the free Acrobat Reader do not allow Save. You must instead save the PDF from the JCI Online page you downloaded it from. PC users: Right-click on the Download link and choose the option that says something like "Save Link As...". Mac users should hold the mouse button down on the link to get these same options.

Having trouble printing a PDF?

  1. Try printing one page at a time or to a newer printer.
  2. Try saving the file to disk before printing rather than opening it "on the fly." This requires that you configure your browser to "Save" rather than "Launch Application" for the file type "application/pdf", and can usually be done in the "Helper Applications" options.
  3. Make sure you are using the latest version of Adobe's Acrobat Reader.

Supplemental data - Download (904.12 KB)

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts