Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
RIPK3 mediates pathogenesis of experimental ventilator-induced lung injury
Ilias I. Siempos, … , Kiichi Nakahira, Augustine M.K. Choi
Ilias I. Siempos, … , Kiichi Nakahira, Augustine M.K. Choi
Published May 3, 2018
Citation Information: JCI Insight. 2018;3(9):e97102. https://doi.org/10.1172/jci.insight.97102.
View: Text | PDF
Research Article Pulmonology

RIPK3 mediates pathogenesis of experimental ventilator-induced lung injury

  • Text
  • PDF
Abstract

In patients requiring ventilator support, mechanical ventilation (MV) may induce acute lung injury (ventilator-induced lung injury [VILI]). VILI is associated with substantial morbidity and mortality in mechanically ventilated patients with and without acute respiratory distress syndrome. At the cellular level, VILI induces necrotic cell death. However, the contribution of necroptosis, a programmed form of necrotic cell death regulated by receptor-interacting protein-3 kinase (RIPK3) and mixed-lineage kinase domain-like pseudokinase (MLKL), to the development of VILI remains unexplored. Here, we show that plasma levels of RIPK3, but not MLKL, were higher in patients with MV (i.e., those prone to VILI) than in patients without MV (i.e., those less likely to have VILI) in two large intensive care unit cohorts. In mice, RIPK3 deficiency, but not MLKL deficiency, ameliorated VILI. In both humans and mice, VILI was associated with impaired fatty acid oxidation (FAO), but in mice this association was not observed under conditions of RIPK3 deficiency. These findings suggest that FAO-dependent RIPK3 mediates pathogenesis of acute lung injury.

Authors

Ilias I. Siempos, Kevin C. Ma, Mitsuru Imamura, Rebecca M. Baron, Laura E. Fredenburgh, Jin-Won Huh, Jong-Seok Moon, Eli J. Finkelsztein, Daniel S. Jones, Michael Torres Lizardi, Edward J. Schenck, Stefan W. Ryter, Kiichi Nakahira, Augustine M.K. Choi

×

Figure 6

Defective fatty acid oxidation in ventilator-induced lung injury in mice.

Options: View larger image (or click on image) Download as PowerPoint
Defective fatty acid oxidation in ventilator-induced lung injury in mice...
(A) Fatty acid quantification in lung tissue of WT mice with versus without mechanical ventilation (MV), determined by gas chromatography and liquid chromatography combined with detection by mass spectrometry. (B and C) After MV at low or high tidal volume (low VT or high VT), free fatty acids were (B) measured in bronchoalveolar lavage fluid (BALF) of Ripk3–/– and WT mice and (C) correlated with total protein concentration in BALF. Data are presented as mean ± SEM (*P < 0.05; ***P < 0.001). Statistical significance was calculated using Mann-Whitney U (A), ANOVA with Tukey post hoc correction (B), and Pearson’s correlation (C) tests.

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts