Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All...
  • Videos
  • Collections
    • Recently published
    • Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Transfers
  • Current issue
  • Past issues
  • By specialty
  • Contact
  • Recently published
  • Technical Advances
  • Clinical Medicine
  • Editorials
  • Top read articles
Immune reprogramming via PD-1 inhibition enhances early-stage lung cancer survival
Geoffrey J. Markowitz, … , Nasser K. Altorki, Vivek Mittal
Geoffrey J. Markowitz, … , Nasser K. Altorki, Vivek Mittal
Published August 16, 2018; First published July 12, 2018
Citation Information: JCI Insight. 2018;3(13):e96836. https://doi.org/10.1172/jci.insight.96836.
View: Text | PDF
Categories: Research Article Immunology Oncology

Immune reprogramming via PD-1 inhibition enhances early-stage lung cancer survival

  • Text
  • PDF
Abstract

Success of immune checkpoint inhibitors in advanced non-small-cell lung cancer (NSCLC) has invigorated their use in the neoadjuvant setting for early-stage disease. However, the cellular and molecular mechanisms of the early immune responses to therapy remain poorly understood. Through an integrated analysis of early-stage NSCLC patients and a Kras mutant mouse model, we show a prevalent programmed cell death 1/programmed cell death 1 ligand 1 (PD-1/PD-L1) axis exemplified by increased intratumoral PD-1+ T cells and PD-L1 expression. Notably, tumor progression was associated with spatiotemporal modulation of the immune microenvironment with dominant immunosuppressive phenotypes at later phases of tumor growth. Importantly, PD-1 inhibition controlled tumor growth, improved overall survival, and reprogrammed tumor-associated lymphoid and myeloid cells. Depletion of T lymphocyte subsets demonstrated synergistic effects of those populations on PD-1 inhibition of tumor growth. Transcriptome analyses revealed T cell subset–specific alterations corresponding to degree of response to the treatment. These results provide insights into temporal evolution of the phenotypic effects of PD-1/PD-L1 activation and inhibition and motivate targeting of this axis early in lung cancer progression.

Authors

Geoffrey J. Markowitz, Lauren S. Havel, Michael J.P. Crowley, Yi Ban, Sharrell B. Lee, Jennifer S. Thalappillil, Navneet Narula, Bhavneet Bhinder, Olivier Elemento, Stephen T.C. Wong, Dingcheng Gao, Nasser K. Altorki, Vivek Mittal

×

Supplemental Table 1 - Download (29.78 KB)

No preview available for this file type
Advertisement
Follow JCI Insight:
Copyright © 2019 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts