Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Nitric oxide–sensitive guanylyl cyclase stimulation improves experimental heart failure with preserved ejection fraction
Nicola Wilck, Lajos Markó, András Balogh, Kristin Kräker, Florian Herse, Hendrik Bartolomaeus, István A. Szijártó, Maik Gollasch, Nadine Reichhart, Olaf Strauss, Arnd Heuser, Damian Brockschnieder, Axel Kretschmer, Ralf Lesche, Florian Sohler, Johannes-Peter Stasch, Peter Sandner, Friedrich C. Luft, Dominik N. Müller, Ralf Dechend, Nadine Haase
Nicola Wilck, Lajos Markó, András Balogh, Kristin Kräker, Florian Herse, Hendrik Bartolomaeus, István A. Szijártó, Maik Gollasch, Nadine Reichhart, Olaf Strauss, Arnd Heuser, Damian Brockschnieder, Axel Kretschmer, Ralf Lesche, Florian Sohler, Johannes-Peter Stasch, Peter Sandner, Friedrich C. Luft, Dominik N. Müller, Ralf Dechend, Nadine Haase
View: Text | PDF
Research Article Cardiology

Nitric oxide–sensitive guanylyl cyclase stimulation improves experimental heart failure with preserved ejection fraction

  • Text
  • PDF
Abstract

Heart failure with preserved ejection fraction (HFpEF) can arise from cardiac and vascular remodeling processes following long-lasting hypertension. Efficacy of common HF therapeutics is unsatisfactory in HFpEF. Evidence suggests that stimulators of the nitric oxide–sensitive soluble guanylyl cyclase (NOsGC) could be of use here. We aimed to characterize the complex cardiovascular effects of NOsGC stimulation using NO-independent stimulator BAY 41-8543 in a double-transgenic rat (dTGR) model of HFpEF. We show a drastically improved survival rate of treated dTGR. We observed less cardiac fibrosis, macrophage infiltration, and gap junction remodeling in treated dTGR. Microarray analysis revealed that treatment of dTGR corrected the dysregulateion of cardiac genes associated with fibrosis, inflammation, apoptosis, oxidative stress, and ion channel function toward an expression profile similar to healthy controls. Treatment reduced systemic blood pressure levels and improved endothelium-dependent vasorelaxation of resistance vessels. Further comprehensive in vivo phenotyping showed an improved diastolic cardiac function, improved hemodynamics, and less susceptibility to ventricular arrhythmias. Short-term BAY 41-8543 application in isolated untreated transgenic hearts with structural remodeling significantly reduced the occurrence of ventricular arrhythmias, suggesting a direct nongenomic role of NOsGC stimulation on excitation. Thus, NOsGC stimulation was highly effective in improving several HFpEF facets in this animal model, underscoring its potential value for patients.

Authors

Nicola Wilck, Lajos Markó, András Balogh, Kristin Kräker, Florian Herse, Hendrik Bartolomaeus, István A. Szijártó, Maik Gollasch, Nadine Reichhart, Olaf Strauss, Arnd Heuser, Damian Brockschnieder, Axel Kretschmer, Ralf Lesche, Florian Sohler, Johannes-Peter Stasch, Peter Sandner, Friedrich C. Luft, Dominik N. Müller, Ralf Dechend, Nadine Haase

×
Problems with a PDF?

This file is in Adobe Acrobat (PDF) format. If you have not installed and configured the Adobe Acrobat Reader on your system.

Having trouble reading a PDF?

PDFs are designed to be printed out and read, but if you prefer to read them online, you may find it easier if you increase the view size to 125%.

Having trouble saving a PDF?

Many versions of the free Acrobat Reader do not allow Save. You must instead save the PDF from the JCI Online page you downloaded it from. PC users: Right-click on the Download link and choose the option that says something like "Save Link As...". Mac users should hold the mouse button down on the link to get these same options.

Having trouble printing a PDF?

  1. Try printing one page at a time or to a newer printer.
  2. Try saving the file to disk before printing rather than opening it "on the fly." This requires that you configure your browser to "Save" rather than "Launch Application" for the file type "application/pdf", and can usually be done in the "Helper Applications" options.
  3. Make sure you are using the latest version of Adobe's Acrobat Reader.

Supplemental data - Download (6.13 MB)

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts