Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Activation-induced cytidine deaminase deficiency accelerates autoimmune diabetes in NOD mice
Qiyuan Tan, Ningwen Tai, Yangyang Li, James Pearson, Sean Pennetti, Zhiguang Zhou, F. Susan Wong, Li Wen
Qiyuan Tan, Ningwen Tai, Yangyang Li, James Pearson, Sean Pennetti, Zhiguang Zhou, F. Susan Wong, Li Wen
View: Text | PDF
Research Article Immunology

Activation-induced cytidine deaminase deficiency accelerates autoimmune diabetes in NOD mice

  • Text
  • PDF
Abstract

B cells play an important role in type 1 diabetes (T1D) development. However, the role of B cell activation-induced cytidine deaminase (AID) in diabetes development is not clear. We hypothesized that AID is important in the immunopathogenesis of T1D. To test this hypothesis, we generated AID-deficient (AID–/–) NOD mice. We found that AID–/–NOD mice developed accelerated T1D, with worse insulitis and high levels of anti-insulin autoantibody in the circulation. Interestingly, neither maternal IgG transferred through placenta, nor IgA transferred through milk affected the accelerated diabetes development. AID–/–NOD mice showed increased activation and proliferation of B and T cells. We found enhanced T-B cell interactions in AID–/–NOD mice, with increased T-bet and IFN-γ expression in CD4+ T cells in the presence of AID–/– B cells. Moreover, excessive lymphoid expansion was observed in AID–/–NOD mice. Importantly, antigen-specific BDC2.5 CD4+ T cells caused more rapid onset of diabetes when cotransferred with AID–/– B cells than when cotransferred with AID+/+ B cells. Thus, our study provides insights into the role of AID in T1D. Our data also suggest that AID is a negative regulator of immune tolerance and ablation of AID can lead to exacerbated islet autoimmunity and accelerated T1D development.

Authors

Qiyuan Tan, Ningwen Tai, Yangyang Li, James Pearson, Sean Pennetti, Zhiguang Zhou, F. Susan Wong, Li Wen

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 437 92
PDF 107 20
Figure 332 5
Supplemental data 30 0
Citation downloads 75 0
Totals 981 117
Total Views 1,098

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts