Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Physiological adaptations to resistance exercise as a function of age
Bethan E. Phillips, … , Kenneth Smith, Philip J. Atherton
Bethan E. Phillips, … , Kenneth Smith, Philip J. Atherton
Published September 7, 2017
Citation Information: JCI Insight. 2017;2(17):e95581. https://doi.org/10.1172/jci.insight.95581.
View: Text | PDF
Clinical Medicine Metabolism Muscle biology

Physiological adaptations to resistance exercise as a function of age

  • Text
  • PDF
Abstract

BACKGROUND. The impact of resistance exercise training (RE-T) across the life span is poorly defined. METHODS. To resolve this, we recruited three distinct age cohorts of young (18–28 years; n = 11), middle-aged (45–55 years; n = 20), and older (nonsarcopenic; 65–75 years; n = 17) individuals to a cross-sectional intervention study. All subjects participated in 20 weeks of fully supervised whole-body progressive RE-T, undergoing assessment of body composition, muscle and vascular function, and metabolic health biomarkers before and after RE-T. Individuals also received stable isotope tracer infusions to ascertain muscle protein synthesis (MPS). RESULTS. There was an age-related increase in adiposity, but only young and middle-age groups demonstrated reductions following RE-T. Increases in blood pressure with age were attenuated by RE-T in middle-aged, but not older, individuals, while age-related increases in leg vascular conductance were unaffected by RE-T. The index of insulin sensitivity was reduced by RE-T in older age. Despite being matched at baseline, only younger individuals increased muscle mass in response to RE-T, and there existed a negative correlation between age and muscle growth; in contrast, increases in mechanical quality were preserved across ages. Acute increases in MPS (upon feeding plus acute RE-T) were enhanced only in younger individuals, perhaps explaining greater hypertrophy. CONCLUSION. Our data indicate that RE-T offsets some, but not all, negative characteristics of ageing — some of which are apparent in midlife. FUNDING. Biotechnology and Biological Sciences Research Council (BB/C516779/1).

Authors

Bethan E. Phillips, John P. Williams, Paul L. Greenhaff, Kenneth Smith, Philip J. Atherton

×

Figure 1

Acute study schematic.

Options: View larger image (or click on image) Download as PowerPoint
Acute study schematic.
1-RM, 1-repetition maximum.
1-RM, 1-repetition maximum.

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts