Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

CD8+ T cells in beige adipogenesis and energy homeostasis
Maria Moysidou, Sevasti Karaliota, Elisavet Kodela, Maria Salagianni, Yassemi Koutmani, Antonia Katsouda, Konstantia Kodella, Panagiotis Tsakanikas, Styliani Ourailidou, Evangelos Andreakos, Nikolaos Kostomitsopoulos, Dimitris Skokos, Antonios Chatzigeorgiou, Kyoung-Jin Chung, Stefan Bornstein, Mark W. Sleeman, Triantafyllos Chavakis, Katia P. Karalis
Maria Moysidou, Sevasti Karaliota, Elisavet Kodela, Maria Salagianni, Yassemi Koutmani, Antonia Katsouda, Konstantia Kodella, Panagiotis Tsakanikas, Styliani Ourailidou, Evangelos Andreakos, Nikolaos Kostomitsopoulos, Dimitris Skokos, Antonios Chatzigeorgiou, Kyoung-Jin Chung, Stefan Bornstein, Mark W. Sleeman, Triantafyllos Chavakis, Katia P. Karalis
View: Text | PDF
Research Article Metabolism

CD8+ T cells in beige adipogenesis and energy homeostasis

  • Text
  • PDF
Abstract

Although accumulation of lymphocytes in the white adipose tissue (WAT) in obesity is linked to insulin resistance, it remains unclear whether lymphocytes also participate in the regulation of energy homeostasis in the WAT. Here, we demonstrate enhanced energy dissipation in Rag1–/– mice, increased catecholaminergic input to subcutaneous WAT, and significant beige adipogenesis. Adoptive transfer experiments demonstrated that CD8+ T cell deficiency accounts for the enhanced beige adipogenesis in Rag1–/– mice. Consistently, we identified that CD8–/– mice also presented with enhanced beige adipogenesis. The inhibitory effect of CD8+ T cells on beige adipogenesis was reversed by blockade of IFN-γ. All together, our findings identify an effect of CD8+ T cells in regulating energy dissipation in lean WAT, mediated by IFN-γ modulation of the abundance of resident immune cells and of local catecholaminergic activity. Our results provide a plausible explanation for the clinical signs of metabolic dysfunction in diseases characterized by altered CD8+ T cell abundance and suggest targeting of CD8+ T cells as a promising therapeutic approach for obesity and other diseases with altered energy homeostasis.

Authors

Maria Moysidou, Sevasti Karaliota, Elisavet Kodela, Maria Salagianni, Yassemi Koutmani, Antonia Katsouda, Konstantia Kodella, Panagiotis Tsakanikas, Styliani Ourailidou, Evangelos Andreakos, Nikolaos Kostomitsopoulos, Dimitris Skokos, Antonios Chatzigeorgiou, Kyoung-Jin Chung, Stefan Bornstein, Mark W. Sleeman, Triantafyllos Chavakis, Katia P. Karalis

×

Usage data is cumulative from January 2025 through January 2026.

Usage JCI PMC
Text version 564 115
PDF 97 21
Figure 333 2
Supplemental data 56 3
Citation downloads 167 0
Totals 1,217 141
Total Views 1,358
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts