Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

REV-ERBα ameliorates heart failure through transcription repression
Lilei Zhang, … , Xudong Liao, Mukesh K. Jain
Lilei Zhang, … , Xudong Liao, Mukesh K. Jain
Published September 7, 2017
Citation Information: JCI Insight. 2017;2(17):e95177. https://doi.org/10.1172/jci.insight.95177.
View: Text | PDF
Research Article Cardiology

REV-ERBα ameliorates heart failure through transcription repression

  • Text
  • PDF
Abstract

A cure for heart failure remains a major unmet clinical need, and current therapies targeting neurohomonal and hemodynamic regulation have limited efficacy. The pathological remodeling of the myocardium has been associated with a stereotypical gene expression program, which had long been viewed as the consequence and not the driver of the disease until very recently. Despite the advance, there is no therapy available to reverse the already committed gene program. Here, we demonstrate that transcriptional repressor REV-ERB binds near driver transcription factors across the genome. Pharmacological activation of REV-ERB selectively suppresses aberrant pathologic gene expression and prevents cardiomyocyte hypertrophy. In vivo, REV-ERBα activation prevents development of cardiac hypertrophy, reduces fibrosis, and halts progression of advanced heart failure in mouse models. Thus, to our knowledge, modulation of gene networks by targeting REV-ERBα represents a novel approach to heart failure therapy.

Authors

Lilei Zhang, Rongli Zhang, Chih-Liang Tien, Ricky E. Chan, Keiki Sugi, Chen Fu, Austin C. Griffin, Yuyan Shen, Thomas P. Burris, Xudong Liao, Mukesh K. Jain

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 684 202
PDF 109 53
Figure 386 4
Supplemental data 80 18
Citation downloads 94 0
Totals 1,353 277
Total Views 1,630
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts