A cure for heart failure remains a major unmet clinical need, and current therapies targeting neurohomonal and hemodynamic regulation have limited efficacy. The pathological remodeling of the myocardium has been associated with a stereotypical gene expression program, which had long been viewed as the consequence and not the driver of the disease until very recently. Despite the advance, there is no therapy available to reverse the already committed gene program. Here, we demonstrate that transcriptional repressor REV-ERB binds near driver transcription factors across the genome. Pharmacological activation of REV-ERB selectively suppresses aberrant pathologic gene expression and prevents cardiomyocyte hypertrophy. In vivo, REV-ERBα activation prevents development of cardiac hypertrophy, reduces fibrosis, and halts progression of advanced heart failure in mouse models. Thus, to our knowledge, modulation of gene networks by targeting REV-ERBα represents a novel approach to heart failure therapy.
Lilei Zhang, Rongli Zhang, Chih-Liang Tien, Ricky E. Chan, Keiki Sugi, Chen Fu, Austin C. Griffin, Yuyan Shen, Thomas P. Burris, Xudong Liao, Mukesh K. Jain
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 545 | 195 |
67 | 50 | |
Figure | 226 | 19 |
Supplemental data | 42 | 7 |
Citation downloads | 73 | 0 |
Totals | 953 | 271 |
Total Views | 1,224 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.