Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Glycolytic requirement for NK cell cytotoxicity and cytomegalovirus control
Annelise Y. Mah, Armin Rashidi, Molly P. Keppel, Nermina Saucier, Emily K. Moore, Joshua B. Alinger, Sandeep K. Tripathy, Sandeep K. Agarwal, Emily K. Jeng, Hing C. Wong, Jeffrey S. Miller, Todd A. Fehniger, Emily M. Mace, Anthony R. French, Megan A. Cooper
Annelise Y. Mah, Armin Rashidi, Molly P. Keppel, Nermina Saucier, Emily K. Moore, Joshua B. Alinger, Sandeep K. Tripathy, Sandeep K. Agarwal, Emily K. Jeng, Hing C. Wong, Jeffrey S. Miller, Todd A. Fehniger, Emily M. Mace, Anthony R. French, Megan A. Cooper
View: Text | PDF
Research Article Immunology

Glycolytic requirement for NK cell cytotoxicity and cytomegalovirus control

  • Text
  • PDF
Abstract

NK cell activation has been shown to be metabolically regulated in vitro; however, the role of metabolism during in vivo NK cell responses to infection is unknown. We examined the role of glycolysis in NK cell function during murine cytomegalovirus (MCMV) infection and the ability of IL-15 to prime NK cells during CMV infection. The glucose metabolism inhibitor 2-deoxy-ᴅ-glucose (2DG) impaired both mouse and human NK cell cytotoxicity following priming in vitro. Similarly, MCMV-infected mice treated with 2DG had impaired clearance of NK-specific targets in vivo, which was associated with higher viral burden and susceptibility to infection on the C57BL/6 background. IL-15 priming is known to alter NK cell metabolism and metabolic requirements for activation. Treatment with the IL-15 superagonist ALT-803 rescued mice from otherwise lethal infection in an NK-dependent manner. Consistent with this, treatment of a patient with ALT-803 for recurrent CMV reactivation after hematopoietic cell transplant was associated with clearance of viremia. These studies demonstrate that NK cell–mediated control of viral infection requires glucose metabolism and that IL-15 treatment in vivo can reduce this requirement and may be effective as an antiviral therapy.

Authors

Annelise Y. Mah, Armin Rashidi, Molly P. Keppel, Nermina Saucier, Emily K. Moore, Joshua B. Alinger, Sandeep K. Tripathy, Sandeep K. Agarwal, Emily K. Jeng, Hing C. Wong, Jeffrey S. Miller, Todd A. Fehniger, Emily M. Mace, Anthony R. French, Megan A. Cooper

×

Figure 8

ALT-803 treatment of CMV reactivation in a posthematopoietic cell transplant patient.

Options: View larger image (or click on image) Download as PowerPoint
ALT-803 treatment of CMV reactivation in a posthematopoietic cell transp...
(A) The patient’s course of cytomegalovirus (CMV) reactivation after hematopoietic cell transplant (HCT), with periods of viremia detectable by quantitative PCR assay shown as orange bars. Posttransplant immunosuppression is shown as a blue bar. Years 1–4 after HCT marked. (B) During reactivation event 5, CMV levels responded to treatment with ALT-803, as indicated by arrows. Points below limit of detection (dashed line) at 137 copies/ml are rounded up. (C) To assess IFN-γ production by the patient NK cells, peripheral blood mononuclear cells (PBMC) were collected and cryopreserved before ALT-803 treatment or 7–14 days after the listed ALT-803 dose. PBMC were thawed and stimulated with 10 ng/ml IL-12 and 100 ng/ml IL-18 for 16 hours; they were then washed and plated for an additional 5 hours (n = 4 technical replicates, 1 experiment, shown as mean ± SEM, statistical significance in a 1-way ANOVA compared with the quantity of cells before dose 1 shown above relevant column). *P < 0.05, ***P < 0.001.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts