Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Inhibition of AKT signaling uncouples T cell differentiation from expansion for receptor-engineered adoptive immunotherapy
Christopher A. Klebanoff, … , Steven A. Feldman, Nicholas P. Restifo
Christopher A. Klebanoff, … , Steven A. Feldman, Nicholas P. Restifo
Published December 7, 2017
Citation Information: JCI Insight. 2017;2(23):e95103. https://doi.org/10.1172/jci.insight.95103.
View: Text | PDF
Research Article Immunology Oncology

Inhibition of AKT signaling uncouples T cell differentiation from expansion for receptor-engineered adoptive immunotherapy

  • Text
  • PDF
Abstract

Adoptive immunotherapies using T cells genetically redirected with a chimeric antigen receptor (CAR) or T cell receptor (TCR) are entering mainstream clinical practice. Despite encouraging results, some patients do not respond to current therapies. In part, this phenomenon has been associated with infusion of reduced numbers of early memory T cells. Herein, we report that AKT signaling inhibition is compatible with CAR and TCR retroviral transduction of human T cells while promoting a CD62L-expressing central memory phenotype. Critically, this intervention did not compromise cell yield. Mechanistically, disruption of AKT signaling preserved MAPK activation and promoted the intranuclear localization of FOXO1, a transcriptional regulator of T cell memory. Consequently, AKT signaling inhibition synchronized the transcriptional profile for FOXO1-dependent target genes across multiple donors. Expression of an AKT-resistant FOXO1 mutant phenocopied the influence of AKT signaling inhibition, while addition of AKT signaling inhibition to T cells expressing mutant FOXO1 failed to further augment the frequency of CD62L-expressing cells. Finally, treatment of established B cell acute lymphoblastic leukemia was superior using anti-CD19 CAR–modified T cells transduced and expanded in the presence of an AKT inhibitor compared with conventionally grown T cells. Thus, inhibition of signaling along the PI3K/AKT axis represents a generalizable strategy to generate large numbers of receptor-modified T cells with an early memory phenotype and superior antitumor efficacy.

Authors

Christopher A. Klebanoff, Joseph G. Crompton, Anthony J. Leonardi, Tori N. Yamamoto, Smita S. Chandran, Robert L. Eil, Madhusudhanan Sukumar, Suman K. Vodnala, Jinhui Hu, Yun Ji, David Clever, Mary A. Black, Devikala Gurusamy, Michael J. Kruhlak, Ping Jin, David F. Stroncek, Luca Gattinoni, Steven A. Feldman, Nicholas P. Restifo

×

Usage data is cumulative from November 2024 through November 2025.

Usage JCI PMC
Text version 1,202 445
PDF 188 75
Figure 474 3
Supplemental data 177 9
Citation downloads 129 0
Totals 2,170 532
Total Views 2,702
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts