GPCR expression was intensively studied in bulk cDNA of leukocyte populations, but limited data are available with respect to expression in individual cells. Here, we show a microfluidic-based single-cell GPCR expression analysis in primary T cells, myeloid cells, and endothelial cells under naive conditions and during experimental autoimmune encephalomyelitis, the mouse model of multiple sclerosis. We found that neuroinflammation induces characteristic changes in GPCR heterogeneity and patterning, and we identify various functionally relevant subgroups with specific GPCR profiles among spinal cord–infiltrating CD4 T cells, macrophages, microglia, or endothelial cells. Using GPCRs CXCR4, S1P1, and LPHN2 as examples, we show how this information can be used to develop new strategies for the functional modulation of Th17 cells and activated endothelial cells. Taken together, single-cell GPCR expression analysis identifies functionally relevant subpopulations with specific GPCR repertoires and provides a basis for the development of new therapeutic strategies in immune disorders.
Denise Tischner, Myriam Grimm, Harmandeep Kaur, Daniel Staudenraus, Jorge Carvalho, Mario Looso, Stefan Günther, Florian Wanke, Sonja Moos, Nelly Siller, Johanna Breuer, Nicholas Schwab, Frauke Zipp, Ari Waisman, Florian C. Kurschus, Stefan Offermanns, Nina Wettschureck
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 435 | 311 |
50 | 61 | |
Figure | 121 | 18 |
Table | 10 | 0 |
Supplemental data | 19 | 7 |
Citation downloads | 32 | 0 |
Totals | 667 | 397 |
Total Views | 1,064 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.