Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

DOCK8 enforces immunological tolerance by promoting IL-2 signaling and immune synapse formation in Tregs
Erin Janssen, Sudha Kumari, Mira Tohme, Sumana Ullas, Victor Barrera, Jeroen M.J. Tas, Marcela Castillo-Rama, Roderick T. Bronson, Shariq M. Usmani, Darrell J. Irvine, Thorsten R. Mempel, Raif S. Geha
Erin Janssen, Sudha Kumari, Mira Tohme, Sumana Ullas, Victor Barrera, Jeroen M.J. Tas, Marcela Castillo-Rama, Roderick T. Bronson, Shariq M. Usmani, Darrell J. Irvine, Thorsten R. Mempel, Raif S. Geha
View: Text | PDF
Research Article Immunology

DOCK8 enforces immunological tolerance by promoting IL-2 signaling and immune synapse formation in Tregs

  • Text
  • PDF
Abstract

Patients deficient in the guanine nucleotide exchange factor DOCK8 have decreased numbers and impaired in vitro function of Tregs and make autoantibodies, but they seldom develop autoimmunity. We show that, similarly, Dock8–/– mice have decreased numbers and impaired in vitro function of Tregs but do not develop autoimmunity. In contrast, mice with selective DOCK8 deficiency in Tregs develop lymphoproliferation, autoantibodies, and gastrointestinal inflammation, despite a normal percentage and in vitro function of Tregs, suggesting that deficient T effector cell function might protect DOCK8-deficient patients from autoimmunity. We demonstrate that DOCK8 associates with STAT5 and is important for IL-2–driven STAT5 phosphorylation in Tregs. DOCK8 localizes within the lamellar actin ring of the Treg immune synapse (IS). Dock8–/– Tregs have abnormal TCR-driven actin dynamics, decreased adhesiveness, an altered gene expression profile, an unstable IS with decreased recruitment of signaling molecules, and impaired transendocytosis of the costimulatory molecule CD86. These data suggest that DOCK8 enforces immunological tolerance by promoting IL-2 signaling, TCR-driven actin dynamics, and the IS in Tregs.

Authors

Erin Janssen, Sudha Kumari, Mira Tohme, Sumana Ullas, Victor Barrera, Jeroen M.J. Tas, Marcela Castillo-Rama, Roderick T. Bronson, Shariq M. Usmani, Darrell J. Irvine, Thorsten R. Mempel, Raif S. Geha

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 476 90
PDF 91 19
Figure 385 0
Supplemental data 49 2
Citation downloads 65 0
Totals 1,066 111
Total Views 1,177
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts