Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Metformin-induced glucagon-like peptide-1 secretion contributes to the actions of metformin in type 2 diabetes
Emilie Bahne, … , Tina Vilsbøll, Filip K. Knop
Emilie Bahne, … , Tina Vilsbøll, Filip K. Knop
Published December 6, 2018
Citation Information: JCI Insight. 2018;3(23):e93936. https://doi.org/10.1172/jci.insight.93936.
View: Text | PDF
Clinical Research and Public Health Endocrinology Metabolism Article has an altmetric score of 88

Metformin-induced glucagon-like peptide-1 secretion contributes to the actions of metformin in type 2 diabetes

  • Text
  • PDF
Abstract

BACKGROUND. Metformin reduces plasma glucose and has been shown to increase glucagon-like peptide 1 (GLP-1) secretion. Whether this is a direct action of metformin on GLP-1 release, and whether some of the glucose-lowering effect of metformin occurs due to GLP-1 release, is unknown. The current study investigated metformin-induced GLP-1 secretion and its contribution to the overall glucose-lowering effect of metformin and underlying mechanisms in patients with type 2 diabetes. METHODS. Twelve patients with type 2 diabetes were included in this placebo-controlled, double-blinded study. On 4 separate days, the patients received metformin (1,500 mg) or placebo suspended in a liquid meal, with subsequent i.v. infusion of the GLP-1 receptor antagonist exendin9-39 (Ex9-39) or saline. During 240 minutes, blood was sampled. The direct effect of metformin on GLP-1 secretion was tested ex vivo in human ileal and colonic tissue with and without dorsomorphin-induced inhibiting of the AMPK activity. RESULTS. Metformin increased postprandial GLP-1 secretion compared with placebo (P = 0.014), and the postprandial glucose excursions were significantly smaller after metformin + saline compared with metformin + Ex9-39 (P = 0.004). Ex vivo metformin acutely increased GLP-1 secretion (colonic tissue, P < 0.01; ileal tissue, P < 0.05), but the effect was abolished by inhibition of AMPK activity. CONCLUSIONS. Metformin has a direct and AMPK-dependent effect on GLP-1–secreting L cells and increases postprandial GLP-1 secretion, which seems to contribute to metformin’s glucose-lowering effect and mode of action. TRIAL REGISTRATION. NCT02050074 (https://clinicaltrials.gov/ct2/show/NCT02050074). FUNDING. This study received grants from the A.P. Møller Foundation, the Novo Nordisk Foundation, the Danish Medical Association research grant, the Australian Research Council, the National Health and Medical Research Council, and Pfizer Inc.

Authors

Emilie Bahne, Emily W. L. Sun, Richard L. Young, Morten Hansen, David P. Sonne, Jakob S. Hansen, Ulrich Rohde, Alice P. Liou, Margaret L. Jackson, Dayan de Fontgalland, Philippa Rabbitt, Paul Hollington, Luigi Sposato, Steven Due, David A. Wattchow, Jens F. Rehfeld, Jens J. Holst, Damien J. Keating, Tina Vilsbøll, Filip K. Knop

×
Problems with a PDF?

This file is in Adobe Acrobat (PDF) format. If you have not installed and configured the Adobe Acrobat Reader on your system.

Having trouble reading a PDF?

PDFs are designed to be printed out and read, but if you prefer to read them online, you may find it easier if you increase the view size to 125%.

Having trouble saving a PDF?

Many versions of the free Acrobat Reader do not allow Save. You must instead save the PDF from the JCI Online page you downloaded it from. PC users: Right-click on the Download link and choose the option that says something like "Save Link As...". Mac users should hold the mouse button down on the link to get these same options.

Having trouble printing a PDF?

  1. Try printing one page at a time or to a newer printer.
  2. Try saving the file to disk before printing rather than opening it "on the fly." This requires that you configure your browser to "Save" rather than "Launch Application" for the file type "application/pdf", and can usually be done in the "Helper Applications" options.
  3. Make sure you are using the latest version of Adobe's Acrobat Reader.

Supplemental data - Download (807.73 KB)

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts

Picked up by 10 news outlets
Blogged by 1
Posted by 19 X users
Referenced in 1 patents
176 readers on Mendeley
See more details