Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Pharmacologic HIV-1 Nef blockade promotes CD8 T cell–mediated elimination of latently HIV-1–infected cells in vitro
Shariq Mujib, … , Thomas E. Smithgall, Mario A. Ostrowski
Shariq Mujib, … , Thomas E. Smithgall, Mario A. Ostrowski
Published September 7, 2017
Citation Information: JCI Insight. 2017;2(17):e93684. https://doi.org/10.1172/jci.insight.93684.
View: Text | PDF
Research Article AIDS/HIV Immunology

Pharmacologic HIV-1 Nef blockade promotes CD8 T cell–mediated elimination of latently HIV-1–infected cells in vitro

  • Text
  • PDF
Abstract

Eradication of the HIV-1 latent reservoir represents the current paradigm to developing a cure for AIDS. HIV-1 has evolved multiple mechanisms to evade CD8 T cell responses, including HIV-1 Nef–mediated downregulation of MHC-I from the surface of infected cells. Nef transcripts and protein are detectable in samples from aviremic donors, suggesting that Nef expression in latently HIV-1–infected CD4 T cells protects them from immune-mediated clearance. Here, we tested 4 small molecule inhibitors of HIV-1 Nef in an in vitro primary CD4 T cell latency model and measured the ability of autologous ex vivo or HIV-1 peptide–expanded CD8 T cells to recognize and kill latently infected cells as a function of inhibitor treatment. Nef inhibition enhanced cytokine secretion by autologous CD8 T cells against latently HIV-1–infected targets in an IFN-γ release assay. Additionally, CD8 T cell–mediated elimination of latently HIV-1–infected cells was significantly enhanced following Nef blockade, measured as a reduction in the frequency of infected cells and Gag protein in cultures following viral outgrowth assays. We demonstrate for the first time to our knowledge that Nef blockade, in combination with HIV-specific CD8 T cell expansion, might be a feasible strategy to target the HIV-1 latent reservoir that should be tested further in vivo.

Authors

Shariq Mujib, Aamir Saiyed, Saleh Fadel, Ardalan Bozorgzad, Nasra Aidarus, Feng Yun Yue, Erika Benko, Colin Kovacs, Lori A. Emert-Sedlak, Thomas E. Smithgall, Mario A. Ostrowski

×

Usage data is cumulative from March 2022 through March 2023.

Usage JCI PMC
Text version 566 1,078
PDF 48 44
Figure 146 12
Supplemental data 14 4
Citation downloads 26 0
Totals 800 1,138
Total Views 1,938
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts