BACKGROUND. The effect of gene expression data on diagnosis remains limited. Here, we show how diagnosis and classification of growth hormone deficiency (GHD) can be achieved from a single blood sample using a combination of transcriptomics and random forest analysis. METHODS. Prepubertal treatment-naive children with GHD (n = 98) were enrolled from the PREDICT study, and controls (n = 26) were acquired from online data sets. Whole blood gene expression was correlated with peak growth hormone (GH) using rank regression and a random forest algorithm tested for prediction of the presence of GHD and in classification of GHD as severe (peak GH <4 μg/l) and nonsevere (peak ≥4 μg/l). Performance was assessed using area under the receiver operating characteristic curve (AUC-ROC). RESULTS. Rank regression identified 347 probe sets in which gene expression correlated with peak GH concentrations (r = ± 0.28, P < 0.01). These 347 probe sets yielded an AUC-ROC of 0.95 for prediction of GHD status versus controls and an AUC-ROC of 0.93 for prediction of GHD severity. CONCLUSION. This study demonstrates highly accurate diagnosis and disease classification for GHD using a combination of transcriptomics and random forest analysis. TRIAL REGISTRATION. NCT00256126 and NCT00699855. FUNDING. Merck and the National Institute for Health Research (CL-2012-06-005).
Philip G. Murray, Adam Stevens, Chiara De Leonibus, Ekaterina Koledova, Pierre Chatelain, Peter E. Clayton
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 484 | 149 |
69 | 28 | |
Figure | 119 | 0 |
Table | 67 | 0 |
Supplemental data | 21 | 2 |
Citation downloads | 58 | 0 |
Totals | 818 | 179 |
Total Views | 997 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.