Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Ectopic expression of Cdk8 induces eccentric hypertrophy and heart failure
Duane D. Hall, Jessica M. Ponce, Biyi Chen, Kathryn M. Spitler, Adrianne Alexia, Gavin Y. Oudit, Long-Sheng Song, Chad E. Grueter
Duane D. Hall, Jessica M. Ponce, Biyi Chen, Kathryn M. Spitler, Adrianne Alexia, Gavin Y. Oudit, Long-Sheng Song, Chad E. Grueter
View: Text | PDF
Research Article Cardiology

Ectopic expression of Cdk8 induces eccentric hypertrophy and heart failure

  • Text
  • PDF
Abstract

Widespread changes in cardiac gene expression occur during heart failure, yet the mechanisms responsible for coordinating these changes remain poorly understood. The Mediator complex represents a nodal point for modulating transcription by bridging chromatin-bound transcription factors with RNA polymerase II activity; it is reversibly regulated by its cyclin-dependent kinase 8 (Cdk8) kinase submodule. Here, we identified increased Cdk8 protein expression in human failing heart explants and determined the consequence of this increase in cardiac-specific Cdk8-expressing mice. Transgenic Cdk8 overexpression resulted in progressive dilated cardiomyopathy, heart failure, and premature lethality. Prior to functional decline, left ventricular cardiomyocytes were dramatically elongated, with disorganized transverse tubules and dysfunctional calcium handling. RNA sequencing results showed that myofilament gene isoforms not typically expressed in adult cardiomyocytes were enriched, while oxidative phosphorylation and fatty acid biosynthesis genes were downregulated. Interestingly, candidate upstream transcription factor expression levels and MAPK signaling pathways thought to determine cardiomyocyte size remained relatively unaffected, suggesting that Cdk8 functions within a novel growth regulatory pathway. Our findings show that manipulating cardiac gene expression through increased Cdk8 levels is detrimental to the heart by establishing a transcriptional program that induces pathological remodeling and eccentric hypertrophy culminating in heart failure.

Authors

Duane D. Hall, Jessica M. Ponce, Biyi Chen, Kathryn M. Spitler, Adrianne Alexia, Gavin Y. Oudit, Long-Sheng Song, Chad E. Grueter

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 904 77
PDF 86 11
Figure 438 0
Table 75 0
Supplemental data 62 1
Citation downloads 99 0
Totals 1,664 89
Total Views 1,753
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts