Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Tetrahydrobiopterin activates brown adipose tissue and regulates systemic energy metabolism
Yasuo Oguri, Yoshihito Fujita, Abulizi Abudukadier, Akiko Ohashi, Tsuyoshi Goto, Futoshi Furuya, Akio Obara, Toru Fukushima, Naomi Matsuo, Minji Kim, Masaya Hosokawa, Teruo Kawada, Hiroyuki Hasegawa, Nobuya Inagaki
Yasuo Oguri, Yoshihito Fujita, Abulizi Abudukadier, Akiko Ohashi, Tsuyoshi Goto, Futoshi Furuya, Akio Obara, Toru Fukushima, Naomi Matsuo, Minji Kim, Masaya Hosokawa, Teruo Kawada, Hiroyuki Hasegawa, Nobuya Inagaki
View: Text | PDF
Research Article Metabolism

Tetrahydrobiopterin activates brown adipose tissue and regulates systemic energy metabolism

  • Text
  • PDF
Abstract

Brown adipose tissue (BAT) is a central organ that acts to increase energy expenditure; its regulatory factors could be clinically useful in the treatment of obesity. Tetrahydrobiopterin (BH4) is an essential cofactor of tyrosine hydroxylase and nitric oxide synthase (NOS). Although BH4 regulates the known regulatory factors of BAT, such as noradrenaline (NA) and NO, participation of BH4 in BAT function remains unclear. In the present study, we investigate the role of BH4 in the regulation of BAT. Hph-1 mice, a mouse model of BH4 deficiency, exhibit obesity, adiposity, glucose intolerance, insulin resistance, and impaired BAT function. Impaired BAT function was ameliorated together with systemic metabolic disturbances by BAT transplantation from BH4-sufficient mice (control mice) into BH4-deficient mice, strongly suggesting that BH4-induced BAT has a critical role in the regulation of systemic energy metabolism. Both NA derived from the sympathetic nerve and NO derived from endothelial NOS in the blood vessels participate in the regulation of BH4. In addition, a direct effect of BH4 in the stimulation of brown adipocytes via NO is implicated. Taken together, BH4 activates BAT and regulates systemic energy metabolism; this suggests an approach for metabolic disorders, such as obesity and diabetes.

Authors

Yasuo Oguri, Yoshihito Fujita, Abulizi Abudukadier, Akiko Ohashi, Tsuyoshi Goto, Futoshi Furuya, Akio Obara, Toru Fukushima, Naomi Matsuo, Minji Kim, Masaya Hosokawa, Teruo Kawada, Hiroyuki Hasegawa, Nobuya Inagaki

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 370 127
PDF 91 28
Figure 381 11
Supplemental data 32 8
Citation downloads 56 0
Totals 930 174
Total Views 1,104

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts