Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Tetrahydrobiopterin activates brown adipose tissue and regulates systemic energy metabolism
Yasuo Oguri, … , Hiroyuki Hasegawa, Nobuya Inagaki
Yasuo Oguri, … , Hiroyuki Hasegawa, Nobuya Inagaki
Published May 4, 2017
Citation Information: JCI Insight. 2017;2(9):e91981. https://doi.org/10.1172/jci.insight.91981.
View: Text | PDF
Research Article Metabolism

Tetrahydrobiopterin activates brown adipose tissue and regulates systemic energy metabolism

  • Text
  • PDF
Abstract

Brown adipose tissue (BAT) is a central organ that acts to increase energy expenditure; its regulatory factors could be clinically useful in the treatment of obesity. Tetrahydrobiopterin (BH4) is an essential cofactor of tyrosine hydroxylase and nitric oxide synthase (NOS). Although BH4 regulates the known regulatory factors of BAT, such as noradrenaline (NA) and NO, participation of BH4 in BAT function remains unclear. In the present study, we investigate the role of BH4 in the regulation of BAT. Hph-1 mice, a mouse model of BH4 deficiency, exhibit obesity, adiposity, glucose intolerance, insulin resistance, and impaired BAT function. Impaired BAT function was ameliorated together with systemic metabolic disturbances by BAT transplantation from BH4-sufficient mice (control mice) into BH4-deficient mice, strongly suggesting that BH4-induced BAT has a critical role in the regulation of systemic energy metabolism. Both NA derived from the sympathetic nerve and NO derived from endothelial NOS in the blood vessels participate in the regulation of BH4. In addition, a direct effect of BH4 in the stimulation of brown adipocytes via NO is implicated. Taken together, BH4 activates BAT and regulates systemic energy metabolism; this suggests an approach for metabolic disorders, such as obesity and diabetes.

Authors

Yasuo Oguri, Yoshihito Fujita, Abulizi Abudukadier, Akiko Ohashi, Tsuyoshi Goto, Futoshi Furuya, Akio Obara, Toru Fukushima, Naomi Matsuo, Minji Kim, Masaya Hosokawa, Teruo Kawada, Hiroyuki Hasegawa, Nobuya Inagaki

×

Figure 7

BH4 deficiency impairs noradrenaline synthesis and supplementation of BH4 increases noradrenaline syntheses.

Options: View larger image (or click on image) Download as PowerPoint
BH4 deficiency impairs noradrenaline synthesis and supplementation of BH...
(A and B) Noradrenaline (NA) contents in brown adipose tissue (BAT) (A; n = 6) and urine collected for 48 hours using individual metabolic cages (B; n = 6–8) of hph-1 mice and control mice of the same background at 6 weeks of age. (C) Dihydroxyphenylalanine (DOPA) production in 120 minutes with PC12 cells after incubation with GTPCH I inhibitor (DAHP) for 16 hours (n = 3). (D) DOPA production in PC12 cells in the last 120 minutes in the presence of extracellular tetrahydrobiopterin (BH4) for the total 240 minutes (n = 5). Values are mean ± SEM. Statistical analysis was performed by Student’s t test (A and B). *P < 0.05 vs. control group. Statistical analysis was also performed by 1-way ANOVA with Tukey post-hoc test (C and D). **P < 0.01 vs. values without DAHP or BH4.

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts