Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
RyR2R420Q catecholaminergic polymorphic ventricular tachycardia mutation induces bradycardia by disturbing the coupled clock pacemaker mechanism
Yue Yi Wang, Pietro Mesirca, Elena Marqués-Sulé, Alexandra Zahradnikova Jr., Olivier Villejoubert, Pilar D’Ocon, Cristina Ruiz, Diana Domingo, Esther Zorio, Matteo E. Mangoni, Jean-Pierre Benitah, Ana María Gómez
Yue Yi Wang, Pietro Mesirca, Elena Marqués-Sulé, Alexandra Zahradnikova Jr., Olivier Villejoubert, Pilar D’Ocon, Cristina Ruiz, Diana Domingo, Esther Zorio, Matteo E. Mangoni, Jean-Pierre Benitah, Ana María Gómez
View: Text | PDF
Research Article Cardiology

RyR2R420Q catecholaminergic polymorphic ventricular tachycardia mutation induces bradycardia by disturbing the coupled clock pacemaker mechanism

  • Text
  • PDF
Abstract

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a lethal genetic arrhythmia that manifests syncope or sudden death in children and young adults under stress conditions. CPVT patients often present bradycardia and sino-atrial node (SAN) dysfunction. However, the mechanism remains unclear. We analyzed SAN function in two CPVT families and in a novel knock-in (KI) mouse model carrying the RyR2R420Q mutation. Humans and KI mice presented slower resting heart rate. Accordingly, the rate of spontaneous intracellular Ca2+ ([Ca2+]i) transients was slower in KI mouse SAN preparations than in WT, without any significant alteration in the “funny” current (If ). The L-type Ca2+ current was reduced in KI SAN cells in a [Ca2+]i-dependent way, suggesting that bradycardia was due to disrupted crosstalk between the “voltage” and “Ca2+” clock, and the mechanisms of pacemaking was induced by aberrant spontaneous RyR2- dependent Ca2+ release. This finding was consistent with a higher Ca2+ leak during diastolic periods produced by long-lasting Ca2+ sparks in KI SAN cells. Our results uncover a mechanism for the CPVT-causing RyR2 N-terminal mutation R420Q, and they highlight the fact that enhancing the Ca2+ clock may slow the heart rhythm by disturbing the coupling between Ca2+ and voltage clocks.

Authors

Yue Yi Wang, Pietro Mesirca, Elena Marqués-Sulé, Alexandra Zahradnikova Jr., Olivier Villejoubert, Pilar D’Ocon, Cristina Ruiz, Diana Domingo, Esther Zorio, Matteo E. Mangoni, Jean-Pierre Benitah, Ana María Gómez

×

Figure 2

KI mice show SAN dysfunction after emotional stress.

Options: View larger image (or click on image) Download as PowerPoint
KI mice show SAN dysfunction after emotional stress.
(A) RR intervals du...
(A) RR intervals during emotional stress protocol in a WT (top) and a KI (bottom) mouse. Black rectangles represent the 15 s of warm air blowing. Forty-five seconds of rest was allowed before the next air blowing. This experiment was repeated in 8 WT and in 7 KI mice. (B) Percentage of mice dead after this protocol in WT and KI mice. (C) An example of ECG recorded from a KI mouse, which died after the emotional stress. First line is the ECG during air blowing. Below, ECG 3 hours after the beginning of the protocol (time after the beginning of the protocol on the left). After ventricular tachycardia and a progressively slower ventricular escape rhythm, the mouse died of asystolia. KI, heterozygous for the RyR2R420Q mutation.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts