Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Microbiota control immune regulation in humanized mice
Elke Gülden, Nalini K. Vudattu, Songyan Deng, Paula Preston-Hurlburt, Mark Mamula, James C. Reed, Sindhu Mohandas, Betsy C. Herold, Richard Torres, Silvio M. Vieira, Bentley Lim, Jose D. Herazo-Maya, Martin Kriegel, Andrew L. Goodman, Chris Cotsapas, Kevan C. Herold
Elke Gülden, Nalini K. Vudattu, Songyan Deng, Paula Preston-Hurlburt, Mark Mamula, James C. Reed, Sindhu Mohandas, Betsy C. Herold, Richard Torres, Silvio M. Vieira, Bentley Lim, Jose D. Herazo-Maya, Martin Kriegel, Andrew L. Goodman, Chris Cotsapas, Kevan C. Herold
View: Text | PDF
Research Article Immunology

Microbiota control immune regulation in humanized mice

  • Text
  • PDF
Abstract

The microbiome affects development and activity of the immune system, and may modulate immune therapies, but there is little direct information about this control in vivo. We studied how the microbiome affects regulation of human immune cells in humanized mice. When humanized mice were treated with a cocktail of 4 antibiotics, there was an increase in the frequency of effector T cells in the gut wall, circulating levels of IFN-γ, and appearance of anti-nuclear antibodies. Teplizumab, a non–FcR-binding anti-CD3ε antibody, no longer delayed xenograft rejection. An increase in CD8+ central memory cells and IL-10, markers of efficacy of teplizumab, were not induced. IL-10 levels were only decreased when the mice were treated with all 4 but not individual antibiotics. Antibiotic treatment affected CD11b+CD11c+ cells, which produced less IL-10 and IL-27, and showed increased expression of CD86 and activation of T cells when cocultured with T cells and teplizumab. Soluble products in the pellets appeared to be responsible for the reduced IL-27 expression in DCs. Similar changes in IL-10 induction were seen when human peripheral blood mononuclear cells were cultured with human stool samples. We conclude that changes in the microbiome may impact the efficacy of immunosuppressive medications by altering immune regulatory pathways.

Authors

Elke Gülden, Nalini K. Vudattu, Songyan Deng, Paula Preston-Hurlburt, Mark Mamula, James C. Reed, Sindhu Mohandas, Betsy C. Herold, Richard Torres, Silvio M. Vieira, Bentley Lim, Jose D. Herazo-Maya, Martin Kriegel, Andrew L. Goodman, Chris Cotsapas, Kevan C. Herold

×

Figure 10

Effects of pellets on IL-27 production.

Options: View larger image (or click on image) Download as PowerPoint
Effects of pellets on IL-27 production.
(A) IL-27 expression by intracel...
(A) IL-27 expression by intracellular cytokine staining in CD11b+ and CD11b+CD11c+ cells isolated from PBMCs cultured with pellets from mice that had or had not been treated with antibiotics (Abx). Ctrl (triangles) represents IL-27 expression in cells that had not been cultured with pellets. There was reduced IL-27 expression in cells exposed to pellets from mice that had been treated with antibiotics. ***P = 0.0007 by ANOVA with paired comparisons. (B) Pellets were harvested from 6 mice that had not (open circles) or had (closed circles) been treated with antibiotics and dissolved in PBS. The insoluble material or supernatants were cultured with CD11b+CD11c+ cells isolated from PBMCs by magnetic beads. Ctrl wells (triangles) represent cells without supernatants or pellets for each experiment. There was reduced IL-27 expression when the supernatants from mice that had been cultured with antibiotics were added to the CD11b+CD11c+ cells. *P = 0.01, ANOVA.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts