Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
LipidFinder: A computational workflow for discovery of lipids identifies eicosanoid-phosphoinositides in platelets
Anne O’Connor, Christopher J. Brasher, David A. Slatter, Sven W. Meckelmann, Jade I. Hawksworth, Stuart M. Allen, Valerie B. O’Donnell
Anne O’Connor, Christopher J. Brasher, David A. Slatter, Sven W. Meckelmann, Jade I. Hawksworth, Stuart M. Allen, Valerie B. O’Donnell
View: Text | PDF
Resource and Technical Advance Inflammation Metabolism

LipidFinder: A computational workflow for discovery of lipids identifies eicosanoid-phosphoinositides in platelets

  • Text
  • PDF
Abstract

Accurate and high-quality curation of lipidomic datasets generated from plasma, cells, or tissues is becoming essential for cell biology investigations and biomarker discovery for personalized medicine. However, a major challenge lies in removing artifacts otherwise mistakenly interpreted as real lipids from large mass spectrometry files (>60 K features), while retaining genuine ions in the dataset. This requires powerful informatics tools; however, available workflows have not been tailored specifically for lipidomics, particularly discovery research. We designed LipidFinder, an open-source Python workflow. An algorithm is included that optimizes analysis based on users’ own data, and outputs are screened against online databases and categorized into LIPID MAPS classes. LipidFinder outperformed three widely used metabolomics packages using data from human platelets. We show a family of three 12-hydroxyeicosatetraenoic acid phosphoinositides (16:0/, 18:1/, 18:0/12-HETE-PI) generated by thrombin-activated platelets, indicating crosstalk between eicosanoid and phosphoinositide pathways in human cells. The software is available on GitHub (https://github.com/cjbrasher/LipidFinder), with full userguides.

Authors

Anne O’Connor, Christopher J. Brasher, David A. Slatter, Sven W. Meckelmann, Jade I. Hawksworth, Stuart M. Allen, Valerie B. O’Donnell

×

Figure 2

Overview of Optimiser.

Options: View larger image (or click on image) Download as PowerPoint
Overview of Optimiser.
A range file (max and min list) is inputted, and ...
A range file (max and min list) is inputted, and the module then chooses random starting parameters. These are inputted and tested, then rescored using Optimiser’s PeakFilter functionality, until further changes do not produce improvement in peak detection (RT, m/z, and intensity). The process uses a representative subset of lipids that has been manually curated from raw data.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts