Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Human regulatory T cells undergo self-inflicted damage via granzyme pathways upon activation
Esilida Sula Karreci, Siawosh K. Eskandari, Farokh Dotiwala, Sujit K. Routray, Ahmed T. Kurdi, Jean Pierre Assaker, Pavlo Luckyanchykov, Albana B. Mihali, Omar Maarouf, Thiago J. Borges, Abdullah Alkhudhayri, Kruti R. Patel, Amr Radwan, Irene Ghobrial, Martina McGrath, Anil Chandraker, Leonardo V. Riella, Wassim Elyaman, Reza Abdi, Judy Lieberman, Jamil Azzi
Esilida Sula Karreci, Siawosh K. Eskandari, Farokh Dotiwala, Sujit K. Routray, Ahmed T. Kurdi, Jean Pierre Assaker, Pavlo Luckyanchykov, Albana B. Mihali, Omar Maarouf, Thiago J. Borges, Abdullah Alkhudhayri, Kruti R. Patel, Amr Radwan, Irene Ghobrial, Martina McGrath, Anil Chandraker, Leonardo V. Riella, Wassim Elyaman, Reza Abdi, Judy Lieberman, Jamil Azzi
View: Text | PDF
Research Article Immunology Transplantation

Human regulatory T cells undergo self-inflicted damage via granzyme pathways upon activation

  • Text
  • PDF
Abstract

Tregs hold great promise as a cellular therapy for multiple immunologically mediated diseases, given their ability to control immune responses. The success of such strategies depends on the expansion of healthy, suppressive Tregs ex vivo and in vivo following the transfer. In clinical studies, levels of transferred Tregs decline sharply in the blood within a few days of the transfer. Tregs have a high rate of apoptosis. Here, we describe a new mechanism of Treg self-inflicted damage. We show that granzymes A and -B (GrA and GrB), which are highly upregulated in human Tregs upon stimulation, leak out of cytotoxic granules to induce cleavage of cytoplasmic and nuclear substrates, precipitating apoptosis in target cells. GrA and GrB substrates were protected from cleavage by inhibiting granzyme activity in vitro. Additionally, we show — by using cytometry by time of flight (CYTOF) — an increase in GrB-expressing Tregs in the peripheral blood and renal allografts of transplant recipients undergoing rejection. These GrB-expressing Tregs showed an activated phenotype but were significantly more apoptotic than non–GrB expressing Tregs. This potentially novel finding improves our understanding of Treg survival and suggests that manipulating Gr expression or activity might be useful for designing more effective Treg therapies.

Authors

Esilida Sula Karreci, Siawosh K. Eskandari, Farokh Dotiwala, Sujit K. Routray, Ahmed T. Kurdi, Jean Pierre Assaker, Pavlo Luckyanchykov, Albana B. Mihali, Omar Maarouf, Thiago J. Borges, Abdullah Alkhudhayri, Kruti R. Patel, Amr Radwan, Irene Ghobrial, Martina McGrath, Anil Chandraker, Leonardo V. Riella, Wassim Elyaman, Reza Abdi, Judy Lieberman, Jamil Azzi

×

Usage data is cumulative from January 2025 through January 2026.

Usage JCI PMC
Text version 765 171
PDF 115 23
Figure 429 8
Supplemental data 126 1
Citation downloads 119 0
Totals 1,554 203
Total Views 1,757
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts