Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

CXCL13-producing TFH cells link immune suppression and adaptive memory in human breast cancer
Chunyan Gu-Trantien, Edoardo Migliori, Laurence Buisseret, Alexandre de Wind, Sylvain Brohée, Soizic Garaud, Grégory Noël, Vu Luan Dang Chi, Jean-Nicolas Lodewyckx, Céline Naveaux, Hugues Duvillier, Stanislas Goriely, Denis Larsimont, Karen Willard-Gallo
Chunyan Gu-Trantien, Edoardo Migliori, Laurence Buisseret, Alexandre de Wind, Sylvain Brohée, Soizic Garaud, Grégory Noël, Vu Luan Dang Chi, Jean-Nicolas Lodewyckx, Céline Naveaux, Hugues Duvillier, Stanislas Goriely, Denis Larsimont, Karen Willard-Gallo
View: Text | PDF
Research Article Immunology Oncology

CXCL13-producing TFH cells link immune suppression and adaptive memory in human breast cancer

  • Text
  • PDF
Abstract

T follicular helper cells (TFH cells) are important regulators of antigen-specific B cell responses. The B cell chemoattractant CXCL13 has recently been linked with TFH cell infiltration and improved survival in human cancer. Although human TFH cells can produce CXCL13, their immune functions are currently unknown. This study presents data from human breast cancer, advocating a role for tumor-infiltrating CXCL13-producing (CXCR5–) TFH cells, here named TFHX13 cells, in promoting local memory B cell differentiation. TFHX13 cells potentially trigger tertiary lymphoid structure formation and thereby generate germinal center B cell responses at the tumor site. Follicular DCs are not potent CXCL13 producers in breast tumor tissues. We used the TFH cell markers PD-1 and ICOS to identify distinct effector and regulatory CD4+ T cell subpopulations in breast tumors. TFHX13 cells are an important component of the PD-1hiICOSint effector subpopulation and coexpanded with PD-1intICOShiFOXP3hi Tregs. IL2 deprivation induces CXCL13 expression in vitro with a synergistic effect from TGFβ1, providing insight into TFHX13 cell differentiation in response to Treg accumulation, similar to conventional TFH cell responses. Our data suggest that human TFHX13 cell differentiation may be a key factor in converting Treg-mediated immune suppression to de novo activation of adaptive antitumor humoral responses in the chronic inflammatory breast cancer microenvironment.

Authors

Chunyan Gu-Trantien, Edoardo Migliori, Laurence Buisseret, Alexandre de Wind, Sylvain Brohée, Soizic Garaud, Grégory Noël, Vu Luan Dang Chi, Jean-Nicolas Lodewyckx, Céline Naveaux, Hugues Duvillier, Stanislas Goriely, Denis Larsimont, Karen Willard-Gallo

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 1,532 470
PDF 181 78
Figure 588 23
Supplemental data 262 29
Citation downloads 136 0
Totals 2,699 600
Total Views 3,299
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts