Peroxisome proliferator–activated receptor–δ (PPARD) is upregulated in many major human cancers, but the role that its expression in cancer cells has in metastasis remains poorly understood. Here, we show that specific PPARD downregulation or genetic deletion of PPARD in cancer cells significantly repressed metastasis in various cancer models in vivo. Mechanistically, PPARD promoted angiogenesis via interleukin 8 in vivo and in vitro. Analysis of transcriptome profiling of HCT116 colon cancer cells with or without genetic deletion of PPARD and gene expression patterns in The Cancer Genome Atlas colorectal adenocarcinoma database identified novel pro-metastatic genes (GJA1, VIM, SPARC, STC1, SNCG) as PPARD targets. PPARD expression in cancer cells drastically affected epithelial-mesenchymal transition, migration, and invasion, further underscoring its necessity for metastasis. Clinically, high PPARD expression in various major human cancers (e.g., colorectal, lung, breast) was associated with significantly reduced metastasis-free survival. Our results demonstrate that PPARD, a druggable protein, is an important molecular target in metastatic cancer.
Xiangsheng Zuo, Weiguo Xu, Min Xu, Rui Tian, Micheline J. Moussalli, Fei Mao, Xiaofeng Zheng, Jing Wang, Jeffrey S. Morris, Mihai Gagea, Cathy Eng, Scott Kopetz, Dipen M. Maru, Asif Rashid, Russell Broaddus, Daoyan Wei, Mien-Chie Hung, Anil K. Sood, Imad Shureiqi
Effects of PPARD on the metastasis of Panc-02 and 4T1 cells in mouse orthotopic models.