Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Loss of immune homeostasis dictates SHIV rebound after stem-cell transplantation
Christopher W. Peterson, Clarisse Benne, Patricia Polacino, Jasbir Kaur, Cristina E. McAllister, Abdelali Filali-Mouhim, Willi Obenza, Tiffany A. Pecor, Meei-Li Huang, Audrey Baldessari, Robert D. Murnane, Ann E. Woolfrey, Keith R. Jerome, Shiu-Lok Hu, Nichole R. Klatt, Stephen DeRosa, Rafick P. Sékaly, Hans-Peter Kiem
Christopher W. Peterson, Clarisse Benne, Patricia Polacino, Jasbir Kaur, Cristina E. McAllister, Abdelali Filali-Mouhim, Willi Obenza, Tiffany A. Pecor, Meei-Li Huang, Audrey Baldessari, Robert D. Murnane, Ann E. Woolfrey, Keith R. Jerome, Shiu-Lok Hu, Nichole R. Klatt, Stephen DeRosa, Rafick P. Sékaly, Hans-Peter Kiem
View: Text | PDF
Research Article AIDS/HIV Transplantation

Loss of immune homeostasis dictates SHIV rebound after stem-cell transplantation

  • Text
  • PDF
Abstract

The conditioning regimen used as part of the Berlin patient’s hematopoietic cell transplant likely contributed to his eradication of HIV infection. We studied the impact of conditioning in simian-human immunodeficiency virus–infected (SHIV-infected) macaques suppressed by combination antiretroviral therapy (cART). The conditioning regimen resulted in a dramatic, but incomplete depletion of CD4+ and CD8+ T cells and CD20+ B cells, increased T cell activation and exhaustion, and a significant loss of SHIV-specific Abs. The disrupted T cell homeostasis and markers of microbial translocation positively correlated with an increased viral rebound after cART interruption. Quantitative viral outgrowth and Tat/rev–induced limiting dilution assays showed that the size of the latent SHIV reservoir did not correlate with viral rebound. These findings identify perturbations of the immune system as a mechanism for the failure of autologous transplantation to eradicate HIV. Thus, transplantation strategies may be improved by incorporating immune modulators to prevent disrupted homeostasis, and gene therapy to protect transplanted cells.

Authors

Christopher W. Peterson, Clarisse Benne, Patricia Polacino, Jasbir Kaur, Cristina E. McAllister, Abdelali Filali-Mouhim, Willi Obenza, Tiffany A. Pecor, Meei-Li Huang, Audrey Baldessari, Robert D. Murnane, Ann E. Woolfrey, Keith R. Jerome, Shiu-Lok Hu, Nichole R. Klatt, Stephen DeRosa, Rafick P. Sékaly, Hans-Peter Kiem

×

Figure 2

Peripheral T cell subsets and CD20+ B cells are significantly depleted following autologous transplantation.

Options: View larger image (or click on image) Download as PowerPoint
Peripheral T cell subsets and CD20+ B cells are significantly depleted f...
Absolute numbers of peripheral blood CD3+CD4+ T cells (A), CD3+CD8+ T cells (B), and CD20+ B cells (C) were quantified by complete blood cell (CBC) counts and flow cytometry from transplanted animals (red lines) and untransplanted animals (blue lines), and plotted as a function of weeks after infection with simian-human immunodeficiency virus 1157ipd3N4 (SHIV-C). Batched flow analyses and CBC data were used to calculate absolute numbers of CD4+ naive (D), CD4+ central memory (CM, E), CD4+ effector memory (EM, F), CD8+ naive (G), CD8+ CM (H), and CD8+ EM subsets (I). Star, autologous transplant; dagger, necropsy. Values in D through I represent mean ± SD. *P < 0.05, **P < 0.01 by 2-tailed Mann-Whitney test. Time points along the x axes in D through I are defined in Supplemental Table 1.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts