Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

miR-323a-3p regulates lung fibrosis by targeting multiple profibrotic pathways
Lingyin Ge, David M. Habiel, Phil M. Hansbro, Richard Y. Kim, Sina A. Gharib, Jeffery D. Edelman, Melanie Königshoff, Tanyalak Parimon, Rena Brauer, Ying Huang, Jenieke Allen, Dianhua Jiang, Adrianne A. Kurkciyan, Takako Mizuno, Barry R. Stripp, Paul W. Noble, Cory M. Hogaboam, Peter Chen
Lingyin Ge, David M. Habiel, Phil M. Hansbro, Richard Y. Kim, Sina A. Gharib, Jeffery D. Edelman, Melanie Königshoff, Tanyalak Parimon, Rena Brauer, Ying Huang, Jenieke Allen, Dianhua Jiang, Adrianne A. Kurkciyan, Takako Mizuno, Barry R. Stripp, Paul W. Noble, Cory M. Hogaboam, Peter Chen
View: Text | PDF
Research Article Pulmonology

miR-323a-3p regulates lung fibrosis by targeting multiple profibrotic pathways

  • Text
  • PDF
Abstract

Maladaptive epithelial repair from chronic injury is a common feature in fibrotic diseases, which in turn activates a pathogenic fibroblast response that produces excessive matrix deposition. Dysregulated microRNAs (miRs) can regulate expression of multiple genes and fundamentally alter cellular phenotypes during fibrosis. Although several miRs have been shown to be associated with lung fibrosis, the mechanisms by which miRs modulate epithelial behavior in lung fibrosis are lacking. Here, we identified miR-323a-3p to be downregulated in the epithelium of lungs with bronchiolitis obliterans syndrome (BOS) after lung transplantation, idiopathic pulmonary fibrosis (IPF), and murine bleomycin-induced fibrosis. Antagomirs for miR-323a-3p augment, and mimics suppress, murine lung fibrosis after bleomycin injury, indicating that this miR may govern profibrotic signals. We demonstrate that miR-323a-3p attenuates TGF-α and TGF-β signaling by directly targeting key adaptors in these important fibrogenic pathways. Moreover, miR-323a-3p lowers caspase-3 expression, thereby limiting programmed cell death from inducers of apoptosis and ER stress. Finally, we find that epithelial expression of miR-323a-3p modulates inhibitory crosstalk with fibroblasts. These studies demonstrate that miR-323a-3p has a central role in lung fibrosis that spans across murine and human disease, and downregulated expression by the lung epithelium releases inhibition of various profibrotic pathways to promote fibroproliferation.

Authors

Lingyin Ge, David M. Habiel, Phil M. Hansbro, Richard Y. Kim, Sina A. Gharib, Jeffery D. Edelman, Melanie Königshoff, Tanyalak Parimon, Rena Brauer, Ying Huang, Jenieke Allen, Dianhua Jiang, Adrianne A. Kurkciyan, Takako Mizuno, Barry R. Stripp, Paul W. Noble, Cory M. Hogaboam, Peter Chen

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 466 35
PDF 116 20
Figure 361 4
Table 107 0
Supplemental data 40 0
Citation downloads 83 0
Totals 1,173 59
Total Views 1,232
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts