Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Lentiviral-mediated phenotypic correction of cystic fibrosis pigs
Ashley L. Cooney, Mahmoud H. Abou Alaiwa, Viral S. Shah, Drake C. Bouzek, Mallory R. Stroik, Linda S. Powers, Nick D. Gansemer, David K. Meyerholz, Michael J. Welsh, David A. Stoltz, Patrick L. Sinn, Paul B. McCray Jr.
Ashley L. Cooney, Mahmoud H. Abou Alaiwa, Viral S. Shah, Drake C. Bouzek, Mallory R. Stroik, Linda S. Powers, Nick D. Gansemer, David K. Meyerholz, Michael J. Welsh, David A. Stoltz, Patrick L. Sinn, Paul B. McCray Jr.
View: Text | PDF
Research Article Pulmonology

Lentiviral-mediated phenotypic correction of cystic fibrosis pigs

  • Text
  • PDF
Abstract

Cystic Fibrosis (CF) is an autosomal recessive disease caused by mutations in CF transmembrane conductance regulator (CFTR), resulting in defective anion transport. Regardless of the disease-causing mutation, gene therapy is a strategy to restore anion transport to airway epithelia. Indeed, viral vector–delivered CFTR can complement the anion channel defect. In this proof-of-principle study, functional in vivo CFTR channel activity was restored in the airways of CF pigs using a feline immunodeficiency virus–based (FIV-based) lentiviral vector pseudotyped with the GP64 envelope. Three newborn CF pigs received aerosolized FIV-CFTR to the nose and lung. Two weeks after viral vector delivery, epithelial tissues were analyzed for functional correction. In freshly excised tracheal and bronchus tissues and cultured ethmoid sinus cells, we observed a significant increase in transepithelial cAMP-stimulated current, evidence of functional CFTR. In addition, we observed increases in tracheal airway surface liquid pH and bacterial killing in CFTR vector–treated animals. Together, these data provide the first evidence to our knowledge that lentiviral delivery of CFTR can partially correct the anion channel defect in a large-animal CF model and validate a translational strategy to treat or prevent CF lung disease.

Authors

Ashley L. Cooney, Mahmoud H. Abou Alaiwa, Viral S. Shah, Drake C. Bouzek, Mallory R. Stroik, Linda S. Powers, Nick D. Gansemer, David K. Meyerholz, Michael J. Welsh, David A. Stoltz, Patrick L. Sinn, Paul B. McCray Jr.

×

Figure 4

FIV-CFTR corrects cystic fibrosis (CF) pig ethmoid sinuses.

Options: View larger image (or click on image) Download as PowerPoint
FIV-CFTR corrects cystic fibrosis (CF) pig ethmoid sinuses.
(A) Well-dif...
(A) Well-differentiated ethmoid cultures from CF pigs treated with feline immunodeficiency virus–based viral vector expressing cystic fibrosis transmembrane conductance regulator (FIV-CFTR) were mounted into Ussing chambers, and bioelectric properties were measured. The change in transepithelial current was measured in response to low chloride (Cl–), (B) forskolin/3-isobutyl-1-methylxanthine (F&I), or (C) GlyH-101. Black diamonds indicate individual animals. n = cultured epithelial cells from 3 pigs; each data point represents 3 replicates/pig. *P < 0.05, Mann-Whitney nonparametric t test. (D) Cultured ethmoid sinuses from CF, non-CF, and CF pigs that received FIV-CFTR were treated with seminaphtharhodafluor (SNARF) + dextran and imaged by confocal microscopy to measure airway surface liquid (ASL) pH. **P < 0.0001, n = 9, one-way ANOVA comparison.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts