Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Citations to this article

CFTR gene transfer with AAV improves early cystic fibrosis pig phenotypes
Benjamin Steines, David D. Dickey, Jamie Bergen, Katherine J.D.A. Excoffon, John R. Weinstein, Xiaopeng Li, Ziying Yan, Mahmoud H. Abou Alaiwa, Viral S. Shah, Drake C. Bouzek, Linda S. Powers, Nicholas D. Gansemer, Lynda S. Ostedgaard, John F. Engelhardt, David A. Stoltz, Michael J. Welsh, Patrick L. Sinn, David V. Schaffer, Joseph Zabner
Benjamin Steines, David D. Dickey, Jamie Bergen, Katherine J.D.A. Excoffon, John R. Weinstein, Xiaopeng Li, Ziying Yan, Mahmoud H. Abou Alaiwa, Viral S. Shah, Drake C. Bouzek, Linda S. Powers, Nicholas D. Gansemer, Lynda S. Ostedgaard, John F. Engelhardt, David A. Stoltz, Michael J. Welsh, Patrick L. Sinn, David V. Schaffer, Joseph Zabner
View: Text | PDF
Research Article Pulmonology

CFTR gene transfer with AAV improves early cystic fibrosis pig phenotypes

  • Text
  • PDF
Abstract

The physiological components that contribute to cystic fibrosis (CF) lung disease are steadily being elucidated. Gene therapy could potentially correct these defects. CFTR-null pigs provide a relevant model to test gene therapy vectors. Using an in vivo selection strategy that amplifies successful capsids by replicating their genomes with helper adenovirus coinfection, we selected an adeno-associated virus (AAV) with tropism for pig airway epithelia. The evolved capsid, termed AAV2H22, is based on AAV2 with 5 point mutations that result in a 240-fold increased infection efficiency. In contrast to AAV2, AAV2H22 binds specifically to pig airway epithelia and is less reliant on heparan sulfate for transduction. We administer AAV2H22-CFTR expressing the CF transmembrane conductance regulator (CFTR) cDNA to the airways of CF pigs. The transduced airways expressed CFTR on ciliated and nonciliated cells, induced anion transport, and improved the airway surface liquid pH and bacterial killing. Most gene therapy studies to date focus solely on Cl– transport as the primary metric of phenotypic correction. Here, we describe a gene therapy experiment where we not only correct defective anion transport, but also restore bacterial killing in CFTR-null pig airways.

Authors

Benjamin Steines, David D. Dickey, Jamie Bergen, Katherine J.D.A. Excoffon, John R. Weinstein, Xiaopeng Li, Ziying Yan, Mahmoud H. Abou Alaiwa, Viral S. Shah, Drake C. Bouzek, Linda S. Powers, Nicholas D. Gansemer, Lynda S. Ostedgaard, John F. Engelhardt, David A. Stoltz, Michael J. Welsh, Patrick L. Sinn, David V. Schaffer, Joseph Zabner

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts