Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Systems biology analysis reveals role of MDM2 in diabetic nephropathy
Rintaro Saito, … , Hans Joachim Anders, Kumar Sharma
Rintaro Saito, … , Hans Joachim Anders, Kumar Sharma
Published October 20, 2016
Citation Information: JCI Insight. 2016;1(17):e87877. https://doi.org/10.1172/jci.insight.87877.
View: Text | PDF
Research Article Nephrology

Systems biology analysis reveals role of MDM2 in diabetic nephropathy

  • Text
  • PDF
Abstract

To derive new insights in diabetic complications, we integrated publicly available human protein-protein interaction (PPI) networks with global metabolic networks using metabolomic data from patients with diabetic nephropathy. We focused on the participating proteins in the network that were computationally predicted to connect the urine metabolites. MDM2 had the highest significant number of PPI connections. As validation, significant downregulation of MDM2 gene expression was found in both glomerular and tubulointerstitial compartments of kidney biopsy tissue from 2 independent cohorts of patients with diabetic nephropathy. In diabetic mice, chemical inhibition of MDM2 with Nutlin-3a led to reduction in the number of podocytes, increased blood urea nitrogen, and increased mortality. Addition of Nutlin-3a decreased WT1+ cells in embryonic kidneys. Both podocyte- and tubule-specific MDM2-knockout mice exhibited severe glomerular and tubular dysfunction, respectively. Interestingly, the only 2 metabolites that were reduced in both podocyte and tubule-specific MDM2-knockout mice were 3-methylcrotonylglycine and uracil, both of which were also reduced in human diabetic kidney disease. Thus, our bioinformatics tool combined with multi-omics studies identified an important functional role for MDM2 in glomeruli and tubules of the diabetic nephropathic kidney and links MDM2 to a reduction in 2 key metabolite biomarkers.

Authors

Rintaro Saito, Anaïs Rocanin-Arjo, Young-Hyun You, Manjula Darshi, Benjamin Van Espen, Satoshi Miyamoto, Jessica Pham, Minya Pu, Simone Romoli, Loki Natarajan, Wenjun Ju, Matthias Kretzler, Robert Nelson, Keiichiro Ono, Dana Thomasova, Shrikant R. Mulay, Trey Ideker, Vivette D’Agati, Ergin Beyret, Juan Carlos Izpisua Belmonte, Hans Joachim Anders, Kumar Sharma

×

Figure 1

Metabolite protein-protein interaction network (MetBridgeDKD) connecting 13 metabolites that were significantly decreased in diabetic kidney disease samples.

Options: View larger image (or click on image) Download as PowerPoint
Metabolite protein-protein interaction network (MetBridgeDKD) connecting...
Red, blue, and pink nodes represent metabolites, enzymes, and bridge proteins, respectively. Pink, red, and blue edges represent KEGG-based associations of metabolite with enzyme, internally curated associations of metabolite with enzyme, and BioGRID-based protein-protein interaction (PPIs), respectively. The network was created using our internally developed MetBridge Generator, which runs as an App on Cytoscape. Node sizes of the bridge proteins (pink) are proportional to significance of node degree. Edge widths of PPIs are proportional to number of articles reporting the corresponding interactions.

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts