Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

IL1RL1 asthma risk variants regulate airway type 2 inflammation
Erin D. Gordon, Joe Palandra, Agata Wesolowska-Andersen, Lando Ringel, Cydney L. Rios, Marrah E. Lachowicz-Scroggins, Louis Z. Sharp, Jamie L. Everman, Hannah J. MacLeod, Jae W. Lee, Robert J. Mason, Michael A. Matthay, Richard T. Sheldon, Michael C. Peters, Karl H. Nocka, John V. Fahy, Max A. Seibold
Erin D. Gordon, Joe Palandra, Agata Wesolowska-Andersen, Lando Ringel, Cydney L. Rios, Marrah E. Lachowicz-Scroggins, Louis Z. Sharp, Jamie L. Everman, Hannah J. MacLeod, Jae W. Lee, Robert J. Mason, Michael A. Matthay, Richard T. Sheldon, Michael C. Peters, Karl H. Nocka, John V. Fahy, Max A. Seibold
View: Text | PDF
Research Article Immunology Pulmonology

IL1RL1 asthma risk variants regulate airway type 2 inflammation

  • Text
  • PDF
Abstract

Genome-wide association studies of asthma have identified genetic variants in the IL1RL1 gene, but the molecular mechanisms conferring risk are unknown. IL1RL1 encodes the ST2 receptor (ST2L) for IL-33 and an inhibitory decoy receptor (sST2). IL-33 promotes type 2 inflammation, which is present in some but not all asthmatics. We find that two single nucleotide polymorphisms (SNPs) in IL1RL1 — rs1420101 and rs11685480 — are strongly associated with plasma sST2 levels, though neither is an expression quantitative trait locus (eQTL) in whole blood. Rather, rs1420101 and rs11685480 mark eQTLs in airway epithelial cells and distal lung parenchyma, respectively. We find that the genetically determined plasma sST2 reservoir, derived from the lung, neutralizes IL-33 activity, and these eQTL SNPs additively increase the risk of airway type 2 inflammation among asthmatics. These risk variants define a population of asthmatics at risk of IL-33–driven type 2 inflammation.

Authors

Erin D. Gordon, Joe Palandra, Agata Wesolowska-Andersen, Lando Ringel, Cydney L. Rios, Marrah E. Lachowicz-Scroggins, Louis Z. Sharp, Jamie L. Everman, Hannah J. MacLeod, Jae W. Lee, Robert J. Mason, Michael A. Matthay, Richard T. Sheldon, Michael C. Peters, Karl H. Nocka, John V. Fahy, Max A. Seibold

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 708 157
PDF 154 28
Figure 417 10
Supplemental data 48 6
Citation downloads 101 0
Totals 1,428 201
Total Views 1,629
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts