Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Autophagy-dependent regulatory T cells are critical for the control of graft-versus-host disease
Laëtitia Le Texier, … , Geoffrey R. Hill, Kelli P.A. MacDonald
Laëtitia Le Texier, … , Geoffrey R. Hill, Kelli P.A. MacDonald
Published September 22, 2016
Citation Information: JCI Insight. 2016;1(15):e86850. https://doi.org/10.1172/jci.insight.86850.
View: Text | PDF
Research Article Immunology Transplantation

Autophagy-dependent regulatory T cells are critical for the control of graft-versus-host disease

  • Text
  • PDF
Abstract

Regulatory T cells (Tregs) play a crucial role in the maintenance of peripheral tolerance. Quantitative and/or qualitative defects in Tregs result in diseases such as autoimmunity, allergy, malignancy, and graft-versus-host disease (GVHD), a serious complication of allogeneic stem cell transplantation (SCT). We recently reported increased expression of autophagy-related genes (Atg) in association with enhanced survival of Tregs after SCT. Autophagy is a self-degradative process for cytosolic components that promotes cell homeostasis and survival. Here, we demonstrate that the disruption of autophagy within FoxP3+ Tregs (B6.Atg7fl/fl-FoxP3cre+) resulted in a profound loss of Tregs, particularly within the bone marrow (BM). This resulted in dysregulated effector T cell activation and expansion, and the development of enterocolitis and scleroderma in aged mice. We show that the BM compartment is highly enriched in TIGIT+ Tregs and that this subset is differentially depleted in the absence of autophagy. Moreover, following allogeneic SCT, recipients of grafts from B6.Atg7fl/fl-FoxP3cre+ donors exhibited reduced Treg reconstitution, exacerbated GVHD, and reduced survival compared with recipients of B6.WT-FoxP3cre+ grafts. Collectively, these data indicate that autophagy-dependent Tregs are critical for the maintenance of tolerance after SCT and that the promotion of autophagy represents an attractive immune-restorative therapeutic strategy after allogeneic SCT.

Authors

Laëtitia Le Texier, Katie E. Lineburg, Benjamin Cao, Cameron McDonald-Hyman, Lucie Leveque-El Mouttie, Jemma Nicholls, Michelle Melino, Blessy C. Nalkurthi, Kylie A. Alexander, Bianca Teal, Stephen J. Blake, Fernando Souza-Fonseca-Guimaraes, Christian R. Engwerda, Rachel D. Kuns, Steven W. Lane, Michele Teng, Charis Teh, Daniel Gray, Andrew D. Clouston, Susan K. Nilsson, Bruce R. Blazar, Geoffrey R. Hill, Kelli P.A. MacDonald

×

Usage data is cumulative from March 2022 through March 2023.

Usage JCI PMC
Text version 635 168
PDF 81 42
Figure 183 0
Supplemental data 17 0
Citation downloads 41 0
Totals 957 210
Total Views 1,167
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts