Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Parasympathetic dysfunction and antiarrhythmic effect of vagal nerve stimulation following myocardial infarction
Marmar Vaseghi, Siamak Salavatian, Pradeep S. Rajendran, Daigo Yagishita, William R. Woodward, David Hamon, Kentaro Yamakawa, Tadanobu Irie, Beth A. Habecker, Kalyanam Shivkumar
Marmar Vaseghi, Siamak Salavatian, Pradeep S. Rajendran, Daigo Yagishita, William R. Woodward, David Hamon, Kentaro Yamakawa, Tadanobu Irie, Beth A. Habecker, Kalyanam Shivkumar
View: Text | PDF
Research Article Cardiology

Parasympathetic dysfunction and antiarrhythmic effect of vagal nerve stimulation following myocardial infarction

  • Text
  • PDF
Abstract

Myocardial infarction causes sympathetic activation and parasympathetic dysfunction, which increase risk of sudden death due to ventricular arrhythmias. Mechanisms underlying parasympathetic dysfunction are unclear. The aim of this study was to delineate consequences of myocardial infarction on parasympathetic myocardial neurotransmitter levels and the function of parasympathetic cardiac ganglia neurons, and to assess electrophysiological effects of vagal nerve stimulation on ventricular arrhythmias in a chronic porcine infarct model. While norepinephrine levels decreased, cardiac acetylcholine levels remained preserved in border zones and viable myocardium of infarcted hearts. In vivo neuronal recordings demonstrated abnormalities in firing frequency of parasympathetic neurons of infarcted animals. Neurons that were activated by parasympathetic stimulation had low basal firing frequency, while neurons that were suppressed by left vagal nerve stimulation had abnormally high basal activity. Myocardial infarction increased sympathetic inputs to parasympathetic convergent neurons. However, the underlying parasympathetic cardiac neuronal network remained intact. Augmenting parasympathetic drive with vagal nerve stimulation reduced ventricular arrhythmia inducibility by decreasing ventricular excitability and heterogeneity of repolarization of infarct border zones, an area with known proarrhythmic potential. Preserved acetylcholine levels and intact parasympathetic neuronal pathways can explain the electrical stabilization of infarct border zones with vagal nerve stimulation, providing insight into its antiarrhythmic benefit.

Authors

Marmar Vaseghi, Siamak Salavatian, Pradeep S. Rajendran, Daigo Yagishita, William R. Woodward, David Hamon, Kentaro Yamakawa, Tadanobu Irie, Beth A. Habecker, Kalyanam Shivkumar

×

Figure 7

Delineation of scar via MRI, electroanatomic mapping, and histology.

Options: View larger image (or click on image) Download as PowerPoint
Delineation of scar via MRI, electroanatomic mapping, and histology.
(A)...
(A) Location and extent of scar on epicardial rendering of cardiac MRI correlated well with electroanatomic mapping. Black arrows indicate course of the left anterior descending coronary artery. (B) Multiple high-resolution ex vivo cardiac MRI demonstrated areas of viable myocardium within “scar” regions. Areas with delayed enhancement (scar) are often heterogenous. Images shown are from 3 different infarcted hearts. Arrows indicate regions of viable myocardium within regions of delayed enhancement. (C) Histological examination using Masson’s Trichrome staining demonstrated viable islands of myocardium in areas demarcated as “scar” based on voltage criteria on electroanatomic mapping. Original magnification, 10×. Asterisk delineates viable islands of myocardium. LAD, left anterior descending coronary artery; LV, left ventricle; RV, right ventricle.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts