Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Three-dimensional characterization of fibroblast foci in idiopathic pulmonary fibrosis
Mark G. Jones, Aurélie Fabre, Philipp Schneider, Francesco Cinetto, Giacomo Sgalla, Mark Mavrogordato, Sanjay Jogai, Aiman Alzetani, Ben G. Marshall, Katherine M.A. O’Reilly, Jane A. Warner, Peter M. Lackie, Donna E. Davies, David M. Hansell, Andrew G. Nicholson, Ian Sinclair, Kevin K. Brown, Luca Richeldi
Mark G. Jones, Aurélie Fabre, Philipp Schneider, Francesco Cinetto, Giacomo Sgalla, Mark Mavrogordato, Sanjay Jogai, Aiman Alzetani, Ben G. Marshall, Katherine M.A. O’Reilly, Jane A. Warner, Peter M. Lackie, Donna E. Davies, David M. Hansell, Andrew G. Nicholson, Ian Sinclair, Kevin K. Brown, Luca Richeldi
View: Text | PDF
Research Article Pulmonology

Three-dimensional characterization of fibroblast foci in idiopathic pulmonary fibrosis

  • Text
  • PDF
Abstract

In idiopathic pulmonary fibrosis (IPF), the fibroblast focus is a key histological feature representing active fibroproliferation. On standard 2D pathologic examination, fibroblast foci are considered small, distinct lesions, although they have been proposed to form a highly interconnected reticulum as the leading edge of a “wave” of fibrosis. Here, we characterized fibroblast focus morphology and interrelationships in 3D using an integrated micro-CT and histological methodology. In 3D, fibroblast foci were morphologically complex structures, with large variations in shape and volume (range, 1.3 × 104 to 9.9 × 107 μm3). Within each tissue sample numerous multiform foci were present, ranging from a minimum of 0.9 per mm3 of lung tissue to a maximum of 11.1 per mm3 of lung tissue. Each focus was an independent structure, and no interconnections were observed. Together, our data indicate that in 3D fibroblast foci form a constellation of heterogeneous structures with large variations in shape and volume, suggesting previously unrecognized plasticity. No evidence of interconnectivity was identified, consistent with the concept that foci represent discrete sites of lung injury and repair.

Authors

Mark G. Jones, Aurélie Fabre, Philipp Schneider, Francesco Cinetto, Giacomo Sgalla, Mark Mavrogordato, Sanjay Jogai, Aiman Alzetani, Ben G. Marshall, Katherine M.A. O’Reilly, Jane A. Warner, Peter M. Lackie, Donna E. Davies, David M. Hansell, Andrew G. Nicholson, Ian Sinclair, Kevin K. Brown, Luca Richeldi

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 949 321
PDF 174 39
Figure 445 5
Table 107 0
Supplemental data 330 4
Citation downloads 155 0
Totals 2,160 369
Total Views 2,529
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts