Inflammation is a critical pathological process in myocardial infarction. Although immunosuppressive therapies can mitigate inflammatory responses and improve outcomes in myocardial infarction, they also increase the risk of infections. Identifying novel regulators of local cardiac inflammation could provide safer therapeutic targets for myocardial ischemia/reperfusion injury. In this study, we identified a previously unknown micropeptide, which we named Inflammation Associated MicroPeptide (IAMP). IAMP is predominantly expressed in cardiac fibroblasts, and its expression is closely associated with cardiac inflammation. Down-regulation of IAMP promotes, whereas its overexpression prevents, the transformation of cardiac fibroblasts into a more inflammatory phenotype under stressed/stimulated conditions, as evidenced by changes in the expression and secretion of pro-inflammatory cytokines. Consequently, loss of IAMP function leads to uncontrolled inflammation and worsens cardiac injury following ischemia/reperfusion surgery. Mechanistically, IAMP promotes the degradation of HIF-1α by interacting with its stabilizing partner HSP90, and thus suppresses the transcription of pro-inflammatory genes downstream of HIF-1α. This study underscores the significance of fibroblast-mediated inflammation in cardiac ischemia/reperfusion injury and highlights the therapeutic potential of targeting micropeptides for myocardial infarction.
Youchen Yan, Tingting Zhang, Xin He, Tailai Du, Gang Dai, Xingfeng Xu, Zhuohui chen, Jialing Wu, Huimin Zhou, Yazhi Peng, Yan Li, Chen Liu, Xinxue Liao, Yugang Dong, Jing-song Ou, Zhan-Peng Huang
Usage data is cumulative from March 2025 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 256 | 0 |
205 | 0 | |
Supplemental data | 174 | 0 |
Citation downloads | 16 | 0 |
Totals | 651 | 0 |
Total Views | 651 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.