Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

High-dimensional analysis of NK cells in kidney transplantation uncovers subsets associated with antibody-independent graft dysfunction
Dan Fu Ruan, Miguel Fribourg, Yuko Yuki, Yeon-Hwa Park, Maureen P. Martin, Haocheng Yu, Geoffrey C. Kelly, Brian Lee, Ronaldo M. de Real, Rachel Lee, Daniel Geanon, Seunghee Kim-Schulze, Nicholas Chun, Paolo Cravedi, Mary Carrington, Peter S. Heeger, Amir Horowitz
Dan Fu Ruan, Miguel Fribourg, Yuko Yuki, Yeon-Hwa Park, Maureen P. Martin, Haocheng Yu, Geoffrey C. Kelly, Brian Lee, Ronaldo M. de Real, Rachel Lee, Daniel Geanon, Seunghee Kim-Schulze, Nicholas Chun, Paolo Cravedi, Mary Carrington, Peter S. Heeger, Amir Horowitz
View: Text | PDF
Research Article Immunology Transplantation

High-dimensional analysis of NK cells in kidney transplantation uncovers subsets associated with antibody-independent graft dysfunction

  • Text
  • PDF
Abstract

Natural killer (NK) cells respond to diseased and allogeneic cells through NKG2A/HLA-E or killer cell immunoglobulin-like receptor (KIR)/HLA-ABC interactions. Correlations between HLA/KIR disparities and kidney transplant pathology suggest an antibody-independent pathogenic role for NK cells in transplantation, but the mechanisms remain unclear. Using CyTOF to characterize recipient peripheral NK cell phenotypes and function, we observed diverse NK cell subsets among participants who responded heterogeneously to allo-stimulators. NKG2A+KIR+ NK cells responded more vigorously than other subsets, and this heightened response persisted after kidney transplantation despite immunosuppression. In test and validation sets from 2 clinical trials, pretransplant donor-induced release of cytotoxicity mediator Ksp37 by NKG2A+ NK cells correlated with reduced long-term allograft function. Separate analyses showed that Ksp37 gene expression in allograft biopsies lacking histological rejection correlated with death-censored graft loss. Our findings support an antibody-independent role for NK cells in transplant injury and support further testing of pretransplant, donor-reactive, NK cell–produced Ksp37 as a risk-assessing, transplantation biomarker.

Authors

Dan Fu Ruan, Miguel Fribourg, Yuko Yuki, Yeon-Hwa Park, Maureen P. Martin, Haocheng Yu, Geoffrey C. Kelly, Brian Lee, Ronaldo M. de Real, Rachel Lee, Daniel Geanon, Seunghee Kim-Schulze, Nicholas Chun, Paolo Cravedi, Mary Carrington, Peter S. Heeger, Amir Horowitz

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 2,070 291
PDF 325 77
Figure 417 0
Table 53 0
Supplemental data 147 14
Citation downloads 110 0
Totals 3,122 382
Total Views 3,504

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts