Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
KRASG12D drives immunosuppression in lung adenocarcinoma through paracrine signaling
Emily L. Lasse-Opsahl, Ivana Barravecchia, Elyse McLintock, Jennifer M. Lee, Sarah F. Ferris, Carlos E. Espinoza, Rachael Hinshaw, Sophia Cavanaugh, Marzia Robotti, Lily Rober, Kristee Brown, Kristena Y. Abdelmalak, Craig J. Galban, Timothy L. Frankel, Yaqing Zhang, Marina Pasca di Magliano, Stefanie Galban
Emily L. Lasse-Opsahl, Ivana Barravecchia, Elyse McLintock, Jennifer M. Lee, Sarah F. Ferris, Carlos E. Espinoza, Rachael Hinshaw, Sophia Cavanaugh, Marzia Robotti, Lily Rober, Kristee Brown, Kristena Y. Abdelmalak, Craig J. Galban, Timothy L. Frankel, Yaqing Zhang, Marina Pasca di Magliano, Stefanie Galban
View: Text | PDF
Research Article Oncology

KRASG12D drives immunosuppression in lung adenocarcinoma through paracrine signaling

  • Text
  • PDF
Abstract

Lung cancer is the leading cause of cancer deaths in the United States. New targeted therapies against the once-deemed undruggable oncogenic KRAS are changing current therapeutic paradigms. However, resistance to targeted KRAS inhibitors almost inevitably occurs; resistance can be driven by tumor cell–intrinsic changes or by changes in the microenvironment. Here, we utilized a genetically engineered mouse model of KRASG12D-driven lung cancer that allows for inducible and reversible expression of the oncogene: activation of oncogenic KRASG12D induces tumor growth; conversely, inactivation of KRASG12D causes tumor regression. We showed that in addition to regulating cancer cell growth and survival, oncogenic KRAS regulated the transcriptional status of cancer-associated fibroblasts and macrophages in this model. Utilizing ex vivo approaches, we showed that secreted factors from cancer cells induced the expression of multiple cytokines in lung fibroblasts, and in turn drove expression of immunosuppressive factors, such as arginase 1, in macrophages. In summary, fibroblasts emerged as a key source of immune regulatory signals, and a potential therapeutic target for improving the efficacy of KRAS inhibitors in lung cancer.

Authors

Emily L. Lasse-Opsahl, Ivana Barravecchia, Elyse McLintock, Jennifer M. Lee, Sarah F. Ferris, Carlos E. Espinoza, Rachael Hinshaw, Sophia Cavanaugh, Marzia Robotti, Lily Rober, Kristee Brown, Kristena Y. Abdelmalak, Craig J. Galban, Timothy L. Frankel, Yaqing Zhang, Marina Pasca di Magliano, Stefanie Galban

×

Figure 2

Oncogenic KRAS changes epithelial gene expression in the tumor microenvironment.

Options: View larger image (or click on image) Download as PowerPoint
Oncogenic KRAS changes epithelial gene expression in the tumor microenvi...
(A) UMAP visualization of scRNA-seq data showing unsupervised clustering of cells from L-iKRAS lung samples (KRAS ON = 21 weeks ON dox; KRAS OFF = 20 weeks ON dox + 1 week OFF). Each color represents a distinct cell cluster. (B) UMAP visualization of scRNA-seq data showing overlap of KRAS ON and KRAS OFF groups. (C) Bar graph comparing cell cluster breakdown per sample (red blood cells were removed). (D) UMAP visualization of defined lung epithelial clusters from KRAS ON and KRAS OFF samples. (E) Violin plots of Cxcl2, Wnt4, and Ccl4 comparing expression levels between total epithelial cells from KRAS ON and KRAS OFF samples. Adjusted P value given above each violin plot. Median expression is indicated with a horizontal line. (F) Heatmap showing averaged scRNA-seq expression data (relative to the highest expressor) for genes in epithelial cells curated from the differential gene expression list. Genes from E are marked with an asterisk. (G) GSEA plot of KRAS ON versus KRAS OFF lung epithelia showing the running enrichment score for the “HALLMARK_KRAS_SIGNALING_DN” gene set. Normalized enrichment score (NES) = –1.430058344. Adjusted P value = 0.043658317.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts