Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

MerTK-dependent efferocytosis by monocytic-MDSCs mediates resolution of ischemia/reperfusion injury after lung transplant
Victoria Leroy, Denny J. Manual Kollareth, Zhenxiao Tu, Jeff Arni C. Valisno, Makena Woolet-Stockton, Biplab Saha, Amir M. Emtiazjoo, Mindaugas Rackauskas, Lyle L. Moldawer, Philip A. Efron, Guoshuai Cai, Carl Atkinson, Gilbert R. Upchurch Jr., Ashish K. Sharma
Victoria Leroy, Denny J. Manual Kollareth, Zhenxiao Tu, Jeff Arni C. Valisno, Makena Woolet-Stockton, Biplab Saha, Amir M. Emtiazjoo, Mindaugas Rackauskas, Lyle L. Moldawer, Philip A. Efron, Guoshuai Cai, Carl Atkinson, Gilbert R. Upchurch Jr., Ashish K. Sharma
View: Text | PDF
Research Article Immunology Transplantation

MerTK-dependent efferocytosis by monocytic-MDSCs mediates resolution of ischemia/reperfusion injury after lung transplant

  • Text
  • PDF
Abstract

Lung transplantation (LTx) outcomes are impeded by ischemia/reperfusion injury (IRI) and subsequent chronic lung allograft dysfunction (CLAD). We examined the undefined role of receptor Mer tyrosine kinase (MerTK) on monocytic myeloid-derived suppressor cells (M-MDSCs) in efferocytosis to facilitate resolution of lung IRI. Single-cell RNA sequencing of lung tissue and bronchoalveolar lavage (BAL) from patients after LTx were analyzed. Murine lung hilar ligation and allogeneic orthotopic LTx models of IRI were used with BALB/c (WT), Cebpb–/– (MDSC-deficient), Mertk–/–, or MerTK–cleavage-resistant mice. A significant downregulation in MerTK-related efferocytosis genes in M-MDSC populations of patients with CLAD was observed compared with healthy individuals. In the murine IRI model, a significant increase in M-MDSCs, MerTK expression, and efferocytosis and attenuation of lung dysfunction was observed in WT mice during injury resolution that was absent in Cebpb–/– and Mertk–/– mice. Adoptive transfer of M-MDSCs in Cebpb–/– mice significantly attenuated lung dysfunction and inflammation. Additionally, in a murine orthotopic LTx model, increases in M-MDSCs were associated with resolution of lung IRI in the transplant recipients. In vitro studies demonstrated the ability of M-MDSCs to efferocytose apoptotic neutrophils in a MerTK-dependent manner. Our results suggest that MerTK-dependent efferocytosis by M-MDSCs can substantially contribute to the resolution of post-LTx IRI.

Authors

Victoria Leroy, Denny J. Manual Kollareth, Zhenxiao Tu, Jeff Arni C. Valisno, Makena Woolet-Stockton, Biplab Saha, Amir M. Emtiazjoo, Mindaugas Rackauskas, Lyle L. Moldawer, Philip A. Efron, Guoshuai Cai, Carl Atkinson, Gilbert R. Upchurch Jr., Ashish K. Sharma

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 2,143 418
PDF 229 75
Figure 524 0
Supplemental data 413 26
Citation downloads 128 0
Totals 3,437 519
Total Views 3,956

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts