Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Citations to this article

The HIV latency reversing agent HODHBt inhibits the phosphatases PTPN1 and PTPN2
J. Natalie Howard, … , R. Brad Jones, Alberto Bosque
J. Natalie Howard, … , R. Brad Jones, Alberto Bosque
Published August 8, 2024
Citation Information: JCI Insight. 2024;9(18):e179680. https://doi.org/10.1172/jci.insight.179680.
View: Text | PDF
Research Article AIDS/HIV

The HIV latency reversing agent HODHBt inhibits the phosphatases PTPN1 and PTPN2

  • Text
  • PDF
Abstract

Nonreceptor tyrosine phosphatases (NTPs) play an important role in regulating protein phosphorylation and have been proposed as attractive therapeutic targets for cancer and metabolic diseases. We have previously identified that 3-Hydroxy-1,2,3-benzotriazin-4(3H)-one (HODHBt) enhanced STAT activation upon cytokine stimulation, leading to increased reactivation of latent HIV and effector functions of NK and CD8 T cells. Here, we demonstrate that HODHBt interacted with and inhibited the NTPs PTPN1 and PTPN2 through a mixed inhibition mechanism. We also confirm that PTPN1 and PTPN2 specifically controlled the phosphorylation of different STATs. The small molecule ABBV-CLS-484 (AC-484) is an active site inhibitor of PTPN1 and PTPN2 currently in clinical trials for advanced solid tumors. We compared AC-484 and HODHBt and found similar effects on STAT5 and immune activation, albeit with different mechanisms of action leading to varying effects on latency reversal. Our studies provide the first specific evidence to our knowledge that enhancing STAT phosphorylation via inhibition of PTPN1 and PTPN2 is an effective tool against HIV.

Authors

J. Natalie Howard, Thomas D. Zaikos, Callie Levinger, Esteban Rivera, Elyse K. McMahon, Carissa S. Holmberg, Joshua Terao, Marta Sanz, Dennis C. Copertino Jr., Weisheng Wang, Natalia Soriano-Sarabia, R. Brad Jones, Alberto Bosque

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts