Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Enhancing radiotherapy response via intratumoral injection of a TLR9 agonist in autochthonous murine sarcomas
Chang Su, … , Yvonne M. Mowery, David G. Kirsch
Chang Su, … , Yvonne M. Mowery, David G. Kirsch
Published July 22, 2024
Citation Information: JCI Insight. 2024;9(14):e178767. https://doi.org/10.1172/jci.insight.178767.
View: Text | PDF
Research Article Immunology Oncology

Enhancing radiotherapy response via intratumoral injection of a TLR9 agonist in autochthonous murine sarcomas

  • Text
  • PDF
Abstract

Radiation therapy (RT) is frequently used to treat cancers, including soft-tissue sarcomas. Prior studies established that the toll-like receptor 9 (TLR9) agonist cytosine-phosphate-guanine oligodeoxynucleotide (CpG) enhances the response to RT in transplanted tumors, but the mechanisms of this enhancement remain unclear. Here, we used CRISPR/Cas9 and the chemical carcinogen 3-methylcholanthrene (MCA) to generate autochthonous soft-tissue sarcomas with high tumor mutation burden. Treatment with a single fraction of 20 Gy RT and 2 doses of CpG significantly enhanced tumor response, which was abrogated by genetic or immunodepletion of CD8+ T cells. To characterize the immune response to CpG+RT, we performed bulk RNA-Seq, single-cell RNA-Seq, and mass cytometry. Sarcomas treated with 20 Gy and CpG demonstrated increased CD8 T cells expressing markers associated with activation and proliferation, such as Granzyme B, Ki-67, and IFN-γ. CpG+RT also upregulated antigen presentation pathways on myeloid cells. Furthermore, in sarcomas treated with CpG+RT, TCR clonality analysis suggests an increase in clonal T cell dominance. Collectively, these findings demonstrate that CpG+RT significantly delays tumor growth in a CD8 T cell–dependent manner. These results provide a strong rationale for clinical trials evaluating CpG or other TLR9 agonists with RT in patients with soft-tissue sarcoma.

Authors

Chang Su, Collin L. Kent, Matthew Pierpoint, Warren Floyd, Lixia Luo, Nerissa T. Williams, Yan Ma, Brian Peng, Alexander L. Lazarides, Ajay Subramanian, Jonathon E. Himes, Vincent M. Perez, Rosa D. Hernansaiz-Ballesteros, Kimberly E. Roche, Jennifer L. Modliszewski, Sara R. Selitsky, Mari L. Shinohara, Amy J. Wisdom, Everett J. Moding, Yvonne M. Mowery, David G. Kirsch

×

Supplemental table 1 - Download (670.48 KB)

No preview available for this file type: xlsx
Use the download link to access the file.
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts