Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Sustained inhibition of CSF1R signaling augments antitumor immunity through inhibiting tumor-associated macrophages
Takahiko Sato, Daisuke Sugiyama, Jun Koseki, Yasuhiro Kojima, Satomi Hattori, Kazuki Sone, Hitomi Nishinakamura, Tomohiro Ishikawa, Yuichi Ishikawa, Takuma Kato, Hitoshi Kiyoi, Hiroyoshi Nishikawa
Takahiko Sato, Daisuke Sugiyama, Jun Koseki, Yasuhiro Kojima, Satomi Hattori, Kazuki Sone, Hitomi Nishinakamura, Tomohiro Ishikawa, Yuichi Ishikawa, Takuma Kato, Hitoshi Kiyoi, Hiroyoshi Nishikawa
View: Text | PDF
Research Article Immunology

Sustained inhibition of CSF1R signaling augments antitumor immunity through inhibiting tumor-associated macrophages

  • Text
  • PDF
Abstract

Tumor-associated macrophages (TAMs) are one of the key immunosuppressive components in the tumor microenvironment (TME) and contribute to tumor development, progression, and resistance to cancer immunotherapy. Several reagents targeting TAMs have been tested in preclinical and clinical studies, but they have had limited success. Here, we show that a unique reagent, FF-10101, exhibited a sustained inhibitory effect against colony-stimulating factor 1 receptor by forming a covalent bond and reduced immunosuppressive TAMs in the TME, which led to strong antitumor immunity. In preclinical animal models, FF-10101 treatment significantly reduced immunosuppressive TAMs and increased antitumor TAMs in the TME. In addition, tumor antigen-specific CD8+ T cells were increased; consequently, tumor growth was significantly inhibited. Moreover, combination treatment with an anti–programmed cell death 1 (anti–PD-1) antibody and FF-10101 exhibited a far stronger antitumor effect than either treatment alone. In human cancer specimens, FF-10101 treatment reduced programmed cell death 1 ligand 1 (PD-L1) expression on TAMs, as observed in animal models. Thus, FF-10101 acts as an immunomodulatory agent that can reduce immunosuppressive TAMs and augment tumor antigen-specific T cell responses, thereby generating an immunostimulatory TME. We propose that FF-10101 is a potential candidate for successful combination cancer immunotherapy with immune checkpoint inhibitors, such as PD-1/PD-L1 blockade.

Authors

Takahiko Sato, Daisuke Sugiyama, Jun Koseki, Yasuhiro Kojima, Satomi Hattori, Kazuki Sone, Hitomi Nishinakamura, Tomohiro Ishikawa, Yuichi Ishikawa, Takuma Kato, Hitoshi Kiyoi, Hiroyoshi Nishikawa

×

Figure 7

FF-10101 exhibits a long-lasting antitumor effect in vivo.

Options: View larger image (or click on image) Download as PowerPoint
FF-10101 exhibits a long-lasting antitumor effect in vivo.
(A) Experimen...
(A) Experimental scheme. One million MCA205 cells were subcutaneously inoculated into the mice on day 0, and drugs (FF-10101 or BLZ945) were administered from day 1. In a short-term study, FF-10101 or BLZ945 was only administered from day 1 to day 8. Tumor tissues and draining lymph nodes (dLNs) were extracted on day 10 and subjected to FCM analyses. (B) Tumor growth curves for long-term groups (solid lines) and short-term groups (dashed line) (n = 10 per group). The tumor volumes between the groups were compared using 2-way ANOVA with multiple t tests corrected with Bonferroni’s method. Adjusted P values: NS ≥ 0.05, * < 0.05, ** < 0.01, *** < 0.001. (C) Summaries of the frequency of FRβ+CD204+ TAMs in CD45+ cells (n = 3 per group). The data are shown as the means ± SDs and were compared by unpaired t test. P values: NS ≥ 0.05, ** < 0.01, *** < 0.001.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts