Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

BET inhibition reforms the immune microenvironment and alleviates T cell dysfunction in chronic lymphocytic leukemia
Audrey L. Smith, Sydney A. Skupa, Alexandria P. Eiken, Timothy E. Reznicek, Elizabeth Schmitz, Nolan Williams, Dalia Y. Moore, Christopher R. D’Angelo, Avyakta Kallam, Matthew A. Lunning, R. Gregory Bociek, Julie M. Vose, Eslam Mohamed, Anna R. Mahr, Paul W. Denton, Ben Powell, Gideon Bollag, M. Jordan Rowley, Dalia El-Gamal
Audrey L. Smith, Sydney A. Skupa, Alexandria P. Eiken, Timothy E. Reznicek, Elizabeth Schmitz, Nolan Williams, Dalia Y. Moore, Christopher R. D’Angelo, Avyakta Kallam, Matthew A. Lunning, R. Gregory Bociek, Julie M. Vose, Eslam Mohamed, Anna R. Mahr, Paul W. Denton, Ben Powell, Gideon Bollag, M. Jordan Rowley, Dalia El-Gamal
View: Text | PDF
Research Article Immunology Oncology

BET inhibition reforms the immune microenvironment and alleviates T cell dysfunction in chronic lymphocytic leukemia

  • Text
  • PDF
Abstract

Redundant tumor microenvironment (TME) immunosuppressive mechanisms and epigenetic maintenance of terminal T cell exhaustion greatly hinder functional antitumor immune responses in chronic lymphocytic leukemia (CLL). Bromodomain and extraterminal (BET) proteins regulate key pathways contributing to CLL pathogenesis and TME interactions, including T cell function and differentiation. Herein, we report that blocking BET protein function alleviates immunosuppressive networks in the CLL TME and repairs inherent CLL T cell defects. The pan-BET inhibitor OPN-51107 reduced exhaustion-associated cell signatures resulting in improved T cell proliferation and effector function in the Eμ-TCL1 splenic TME. Following BET inhibition (BET-i), TME T cells coexpressed significantly fewer inhibitory receptors (IRs) (e.g., PD-1, CD160, CD244, LAG3, VISTA). Complementary results were witnessed in primary CLL cultures, wherein OPN-51107 exerted proinflammatory effects on T cells, regardless of leukemic cell burden. BET-i additionally promotes a progenitor T cell phenotype through reduced expression of transcription factors that maintain terminal differentiation and increased expression of TCF-1, at least in part through altered chromatin accessibility. Moreover, direct T cell effects of BET-i were unmatched by common targeted therapies in CLL. This study demonstrates the immunomodulatory action of BET-i on CLL T cells and supports the inclusion of BET inhibitors in the management of CLL to alleviate terminal T cell dysfunction and potentially enhance tumoricidal T cell activity.

Authors

Audrey L. Smith, Sydney A. Skupa, Alexandria P. Eiken, Timothy E. Reznicek, Elizabeth Schmitz, Nolan Williams, Dalia Y. Moore, Christopher R. D’Angelo, Avyakta Kallam, Matthew A. Lunning, R. Gregory Bociek, Julie M. Vose, Eslam Mohamed, Anna R. Mahr, Paul W. Denton, Ben Powell, Gideon Bollag, M. Jordan Rowley, Dalia El-Gamal

×

Usage data is cumulative from January 2025 through January 2026.

Usage JCI PMC
Text version 1,353 208
PDF 277 37
Figure 460 9
Supplemental data 128 10
Citation downloads 116 0
Totals 2,334 264
Total Views 2,598

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts