Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Agonistic anti-DCIR antibody inhibits ITAM-mediated inflammatory signaling and promotes immune resolution
Liang Chen, … , Kevin White, Hsi-Ju Wei
Liang Chen, … , Kevin White, Hsi-Ju Wei
Published May 23, 2024
Citation Information: JCI Insight. 2024;9(12):e176064. https://doi.org/10.1172/jci.insight.176064.
View: Text | PDF
Research Article Immunology

Agonistic anti-DCIR antibody inhibits ITAM-mediated inflammatory signaling and promotes immune resolution

  • Text
  • PDF
Abstract

DC inhibitory receptor (DCIR) is a C-type lectin receptor selectively expressed on myeloid cells, including monocytes, macrophages, DCs, and neutrophils. Its role in immune regulation has been implicated in murine models and human genome-wide association studies, suggesting defective DCIR function associates with increased susceptibility to autoimmune diseases such as rheumatoid arthritis, lupus, and Sjögren’s syndrome. However, little is known about the mechanisms underlying DCIR activation to dampen inflammation. Here, we developed anti-DCIR agonistic antibodies that promote phosphorylation on DCIR’s immunoreceptor tyrosine-based inhibitory motifs and recruitment of SH2 containing protein tyrosine phosphatase-2 for reducing inflammation. We also explored the inflammation resolution by depleting DCIR+ cells with antibodies. Utilizing a human DCIR–knock-in mouse model, we validated the antiinflammatory properties of the agonistic anti-DCIR antibody in experimental peritonitis and colitis. These findings provide critical evidence for targeting DCIR to develop transformative therapies for inflammatory diseases.

Authors

Liang Chen, Suresh Patil, Jeffrey Barbon, James Waire, Stephen Laroux, Donna McCarthy, Mishra Pratibha, Suju Zhong, Feng Dong, Karin Orsi, Gunarso Nguyen, Yingli Yang, Nancy Crosbie, Eric Dominguez, Arun Deora, Geertruida Veldman, Susan Westmoreland, Liang Jin, Timothy Radstake, Kevin White, Hsi-Ju Wei

×

Supplemental video 6 - Download (10.78 MB)

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts