Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Effects of SIPA1L1 on trabecular meshwork extracellular matrix protein accumulation and cellular phagocytosis in POAG
Chenyu Xu, Jiahong Wei, Dan Song, Siyu Zhao, Mingmin Hou, Yuchen Fan, Li Guo, Hao Sun, Tao Guo
Chenyu Xu, Jiahong Wei, Dan Song, Siyu Zhao, Mingmin Hou, Yuchen Fan, Li Guo, Hao Sun, Tao Guo
View: Text | PDF
Research Article Ophthalmology

Effects of SIPA1L1 on trabecular meshwork extracellular matrix protein accumulation and cellular phagocytosis in POAG

  • Text
  • PDF
Abstract

Accumulation of extracellular matrix (ECM) proteins in trabecular meshwork (TM), which leads to increased outflow resistance of aqueous humor and consequently high intraocular pressure, is a major cause of primary open-angle glaucoma (POAG). According to our preliminary research, the RapGAP protein superfamily member, signal-induced proliferation-associated 1-like 1 protein (SIPA1L1), which is involved in tissue fibrosis, may have an impact on POAG by influencing ECM metabolism of TM. This study aims to confirm these findings and identify effects and cellular mechanisms of SIPA1L1 on ECM changes and phagocytosis in human TM (HTM) cells. Our results showed that the expression of SIPA1L1 in HTM cells was significantly increased by TGF-β2 treatment in label-free quantitative proteomics. The aqueous humor and TM cell concentration of SIPA1L1 in POAG patients was higher than that of control. In HTM cells, TGF-β2 increased expression of SIPA1L1 along with accumulation of ECM, RhoA, and p-cofilin 1. The effects of TGF-β2 were reduced by si-SIPA1L1. TGF-β2 decreased HTM cell phagocytosis by polymerizing cytoskeletal actin filaments, while si-SIPA1L1 increased phagocytosis by disassembling actin filaments. Simultaneously, overexpressing SIPA1L1 alone exhibited comparable effects to that of TGF-β2. Our studies demonstrate that SIPA1L1 not only promotes the production of ECM, but also inhibits its removal by reducing phagocytosis. Targeting SIPA1L1 degradation may become a significant therapy for POAG.

Authors

Chenyu Xu, Jiahong Wei, Dan Song, Siyu Zhao, Mingmin Hou, Yuchen Fan, Li Guo, Hao Sun, Tao Guo

×

Figure 5

Knockdown SIPA1L1 promoted phagocytosis in HTM cells.

Options: View larger image (or click on image) Download as PowerPoint
Knockdown SIPA1L1 promoted phagocytosis in HTM cells.
HTM cells were tra...
HTM cells were transfected with si-SIPA1L1 (20 μM) for 8 hours with or without TGF-β2 (5 ng/mL) for 48 hours. (A) Expression of cytoskeletal proteins (F-actin indicated by phalloidin staining, green; G-actin, red) is shown with fluorescence micrographs. (B) Phagocytic activity was evaluated by incubating pHrodo Red bioparticles with the cells for 3 hours. (C and D) Red fluorescence intensity of pHrodo bioparticles was quantified by ImageJ and FACS. (E–H) Western blots were used to assess RhoA protein level and phosphorylated CFL1 protein level. (I) The proposed SIPA1L1 signaling pathway associated with phagocytosis is shown schematically. All results used more than 3 individual HTM cell strains and data are expressed as mean ± SEM (n = 4–6). *P < 0.05, **P < 0.01, ***P < 0.001 compared with control; #P < 0.05, ##P < 0.01, ###P < 0.001 compared with TGF-β2–treated group by 1-way ANOVA followed by Tukey’s multiple-comparison test. Scale bars: 30 μm. Each symbol in graphs represents the data from each experiment.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts