Hypoxia/hypoxia-inducible factor 1α–driven immunosuppressive transcription and cAMP-elevating signaling through A2A adenosine receptors (A2ARs) represent a major tumor-protecting pathway that enables immune evasion. Recent promising clinical outcomes due to the blockade of the adenosine-generating enzyme CD73 and A2AR in patients refractory to all other therapies have confirmed the importance of targeting hypoxia-adenosinergic signaling. We report a feasible approach to target the upstream stage of hypoxia-adenosinergic immunosuppression using an oxygen-carrying nanoemulsion (perfluorocarbon blood substitute). We show that oxygenation agent therapy (a) eliminates tumor hypoxia, (b) improves efficacy of endogenously developed and adoptively transferred T cells, and thereby (c) promotes regression of tumors in different anatomical locations. We show that both T cells and NK cells avoid hypoxic tumor areas and that reversal of hypoxia by oxygenation agent therapy increases intratumoral infiltration of activated T cells and NK cells due to reprogramming of the tumor microenvironment (TME). Thus, repurposing oxygenation agents in combination with supplemental oxygen may improve current cancer immunotherapies by preventing hypoxia-adenosinergic suppression, promoting immune cell infiltration and enhancing effector responses. These data also suggest that pretreating patients with oxygenation agent therapy may reprogram the TME from immunosuppressive to immune-permissive prior to adoptive cell therapy, or other forms of immunotherapy.
Katarina Halpin-Veszeleiova, Michael P. Mallouh, Lucy M. Williamson, Ashley C. Apro, Nuria R. Botticello-Romero, Camille Bahr, Maureen Shin, Kelly M. Ward, Laura Rosenberg, Vladimir B. Ritov, Michail V. Sitkovsky, Edwin K. Jackson, Bruce D. Spiess, Stephen M. Hatfield
Usage data is cumulative from March 2025 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 746 | 0 |
230 | 0 | |
Figure | 198 | 0 |
Supplemental data | 115 | 0 |
Citation downloads | 29 | 0 |
Totals | 1,318 | 0 |
Total Views | 1,318 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.