Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Inhibition of retinoic acid signaling in proximal tubular epithelial cells protects against acute kidney injury
Min Yang, … , Alan J. Davidson, Mark de Caestecker
Min Yang, … , Alan J. Davidson, Mark de Caestecker
Published September 12, 2023
Citation Information: JCI Insight. 2023;8(20):e173144. https://doi.org/10.1172/jci.insight.173144.
View: Text | PDF
Research Article Nephrology

Inhibition of retinoic acid signaling in proximal tubular epithelial cells protects against acute kidney injury

  • Text
  • PDF
Abstract

Retinoic acid receptor (RAR) signaling is essential for mammalian kidney development but, in the adult kidney, is restricted to occasional collecting duct epithelial cells. We now show that there is widespread reactivation of RAR signaling in proximal tubular epithelial cells (PTECs) in human sepsis-associated acute kidney injury (AKI) and in mouse models of AKI. Genetic inhibition of RAR signaling in PTECs protected against experimental AKI but was unexpectedly associated with increased expression of the PTEC injury marker Kim1. However, the protective effects of inhibiting PTEC RAR signaling were associated with increased Kim1-dependent apoptotic cell clearance, or efferocytosis, and this was associated with dedifferentiation, proliferation, and metabolic reprogramming of PTECs. These data demonstrate the functional role that reactivation of RAR signaling plays in regulating PTEC differentiation and function in human and experimental AKI.

Authors

Min Yang, Lauren N. Lopez, Maya Brewer, Rachel Delgado, Anna Menshikh, Kelly Clouthier, Yuantee Zhu, Thitinee Vanichapol, Haichun Yang, Raymond C. Harris, Leslie Gewin, Craig R. Brooks, Alan J. Davidson, Mark de Caestecker

×

Graphical abstract

Options: View larger image (or click on image)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts