Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

IL-15 reprogramming compensates for NK cell mitochondrial dysfunction in HIV-1 infection
Elia Moreno-Cubero, Aljawharah Alrubayyi, Stefan Balint, Ane Ogbe, Upkar S. Gill, Rebecca Matthews, Sabine Kinloch, Fiona Burns, Sarah L. Rowland-Jones, Persephone Borrow, Anna Schurich, Michael Dustin, Dimitra Peppa
Elia Moreno-Cubero, Aljawharah Alrubayyi, Stefan Balint, Ane Ogbe, Upkar S. Gill, Rebecca Matthews, Sabine Kinloch, Fiona Burns, Sarah L. Rowland-Jones, Persephone Borrow, Anna Schurich, Michael Dustin, Dimitra Peppa
View: Text | PDF
Research Article AIDS/HIV Immunology

IL-15 reprogramming compensates for NK cell mitochondrial dysfunction in HIV-1 infection

  • Text
  • PDF
Abstract

Dynamic regulation of cellular metabolism is important for maintaining homeostasis and can directly influence immune cell function and differentiation, including NK cell responses. Persistent HIV-1 infection leads to a state of chronic immune activation, NK cell subset redistribution, and progressive NK cell dysregulation. In this study, we examined the metabolic processes that characterize NK cell subsets in HIV-1 infection, including adaptive NK cell subpopulations expressing the activating receptor NKG2C, which expand during chronic infection. These adaptive NK cells exhibit an enhanced metabolic profile in HIV-1– individuals infected with human cytomegalovirus (HCMV). However, the bioenergetic advantage of adaptive CD57+NKG2C+ NK cells is diminished during chronic HIV-1 infection, where NK cells uniformly display reduced oxidative phosphorylation (OXPHOS). Defective OXPHOS was accompanied by increased mitochondrial depolarization, structural alterations, and increased DRP-1 levels promoting fission, suggesting that mitochondrial defects are restricting the metabolic plasticity of NK cell subsets in HIV-1 infection. The metabolic requirement for the NK cell response to receptor stimulation was alleviated upon IL-15 pretreatment, which enhanced mammalian target of rapamycin complex 1 (mTORC1) activity. IL-15 priming enhanced NK cell functionality to anti-CD16 stimulation in HIV-1 infection, representing an effective strategy for pharmacologically boosting NK cell responses.

Authors

Elia Moreno-Cubero, Aljawharah Alrubayyi, Stefan Balint, Ane Ogbe, Upkar S. Gill, Rebecca Matthews, Sabine Kinloch, Fiona Burns, Sarah L. Rowland-Jones, Persephone Borrow, Anna Schurich, Michael Dustin, Dimitra Peppa

×

Usage data is cumulative from January 2025 through January 2026.

Usage JCI PMC
Text version 1,369 375
PDF 199 78
Figure 393 2
Supplemental data 187 28
Citation downloads 66 0
Totals 2,214 483
Total Views 2,697

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts