Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
C3aR-initiated signaling is a critical mechanism of podocyte injury in membranous nephropathy
Qi Zhang, … , Paolo Cravedi, Stefano Da Sacco
Qi Zhang, … , Paolo Cravedi, Stefano Da Sacco
Published January 16, 2024
Citation Information: JCI Insight. 2024;9(4):e172976. https://doi.org/10.1172/jci.insight.172976.
View: Text | PDF
Research Article Nephrology

C3aR-initiated signaling is a critical mechanism of podocyte injury in membranous nephropathy

  • Text
  • PDF
Abstract

The deposition of antipodocyte autoantibodies in the glomerular subepithelial space induces primary membranous nephropathy (MN), the leading cause of nephrotic syndrome worldwide. Taking advantage of the glomerulus-on-a-chip system, we modeled human primary MN induced by anti-PLA2R antibodies. Here we show that exposure of primary human podocytes expressing PLA2R to MN serum results in IgG deposition and complement activation on their surface, leading to loss of the chip permselectivity to albumin. C3a receptor (C3aR) antagonists as well as C3AR gene silencing in podocytes reduced oxidative stress induced by MN serum and prevented albumin leakage. In contrast, inhibition of the formation of the membrane-attack-complex (MAC), previously thought to play a major role in MN pathogenesis, did not affect permselectivity to albumin. In addition, treatment with a C3aR antagonist effectively prevented proteinuria in a mouse model of MN, substantiating the chip findings. In conclusion, using a combination of pathophysiologically relevant in vitro and in vivo models, we established that C3a/C3aR signaling plays a critical role in complement-mediated MN pathogenesis, indicating an alternative therapeutic target for MN.

Authors

Qi Zhang, Sofia Bin, Kelly Budge, Astgik Petrosyan, Valentina Villani, Paola Aguiari, Coralien Vink, Jack Wetzels, Hasmik Soloyan, Gaetano La Manna, Manuel Alfredo Podestà, Paolo Molinari, Sargis Sedrakyan, Kevin V. Lemley, Roger E. De Filippo, Laura Perin, Paolo Cravedi, Stefano Da Sacco

×

Figure 4

C3aR antagonism effectively prevents changes in podocyte phenotype by MN serum.

Options: View larger image (or click on image) Download as PowerPoint
C3aR antagonism effectively prevents changes in podocyte phenotype by MN...
(A) Western blotting analysis of C3aR in hPOD monolayers exposed to MN sera or MN sera + C3aRA. The antagonist efficiently prevented C3aR (54 kDa) increase. Bands were normalized against β-actin (42 KDa), showing a significantly decreased protein level. n = 3/group. (B) Western blotting analysis of PLA2R (150kDa) in hPOD monolayers exposed to MN sera or MN sera + C3aRA. The antagonist efficiently prevented PLA2R increase. Bands were normalized against β-actin (42 kDa), showing a significantly decreased protein level. n = 3/group. (C) Western blotting analysis of apoptosis, measured by expression of caspase-3 (35 kDa), in hPOD monolayers exposed to MN sera or MN sera + C3aRA. The antagonist significantly decreased apoptosis in hPOD. Bands were normalized against β-actin (42 kDa), showing a significantly decreased protein level. n = 3/group. (D) Western Blotting bands for Synaptopodin (100kDa) and ROMO1 (10 kDa) and respective β-actin (42 kDa) after exposure to healthy serum, anti-PLA2R serum, or anti-PLA2R serum + C3aRA. (n = 3/group). (E) Western blotting analysis of synaptopodin (100 kDa) in hPOD monolayers exposed to MN sera or MN sera+ C3aRA. The antagonist efficiently prevented synaptopodin loss. Bands were normalized against β-actin (42 kDa), showing a significantly increased protein level. Bands are shown in D. n of replicates/group: 3. (F) Western blotting analysis of oxidative stress, measured by expression of ROMO1 (10 kDa), in hPOD monolayers exposed to MN sera or MN sera+ C3aRA. The antagonist significantly decreased ROMO1 expression in hPOD. Bands were normalized against β-actin (42 kDa), showing a significantly decreased protein level. n = 3/group. Bands are shown in D. All statistical values determined by 1-way ANOVA. *P < 0.05; **P < 0.01, ***P < 0.001.

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts